бетон и бетонные смеси реферат

Заказать бетон в Москве

Хотите продавать быстрее? Узнать как. Услуги » Прокат товаров. Нур-Султан АстанаСарыаркинский район 26 май. Ремонт и строительство » Cтроительные услуги.

Бетон и бетонные смеси реферат бетоны соотношение

Бетон и бетонные смеси реферат

На органических вяжущих веществах битум, синтетические смолы и т. Многообразие вяжущих веществ, заполнителей, добавок и технологических приемов позволяет получать бетоны с самыми разнообразными свойствами. Бетон является хрупким материалом: его прочность при сжатии в несколько раз выше прочности при растяжении.

Для восприятия растягивающих напряжений бетон армируют стальными стержнями, получая железобетон. В железобетоне арматуру располагают так, чтобы она воспринимала растягивающие напряжения, а сжимающие напряжения передавались на бетон. Совместная работа арматуры и бетона обусловливается хорошим сцеплением между ними и приблизительно одинаковыми температурными коэффициентами линейного расширения.

Бетон предохраняет арматуру от коррозии. Бетонные и железобетонные конструкции изготовляют либо непосредственно на месте строительства — монолитный бетон и железобетон, либо на заводах и полигонах с последующим монтажом на строительной площадке — сборный бетон и железобетон.

В настоящее время используют различные виды бетона. Разобраться в их многообразии помогает классификация бетонов. Бетоны классифицируют по средней плотности, виду вяжущего вещества и назначению. Многие свойства бетона зависят от его плотности, на величину которой влияют плотность цементного камня, вид заполнителя и структура бетонов. Особо тяжелые бетоны приготовляют на тяжелых заполнителях — стальных опилках или стружках сталебетон , железной руде лимонитовый имагнетитовый бетоны или барите баритовый бетон.

В строительстве наиболее широко используют тяжелый бетон с плотностью Облегченный бетон с плотностью Легкие бетоны изготовляют на пористых заполнителях керамзит, аглопорит, вспученный шлак, пемза, туф и др. Применение легких бетонов уменьшает массу строительных конструкций, удешевляет строительство, поэтому производство их развивается опережающими темпами. К особо легким бетонам относятся ячеистые бетоны газобетон, пенобетон , которые получают вспучиванием смеси вяжущего, тонкомолотой добавки и воды с помощью специальных способов, и крупнопористый бетон на легких заполнителях.

В ячеистых бетонах заполнителем, по существу, является воздух, находящийся в искусственно созданных ячейках. Главной составляющей бетона, во многом определяющей его свойства, является вяжущее вещество, по виду которого различают бетоны цементные, силикатные, гипсовые, шлакощелочные, полимербетоны, полимерцементные и специальные. Цементные бетоны приготовляют на различных цементах и наиболее широко применяют в строительстве.

К разновидностям цементных бетонов относятся: декоративные бетоны, изготовляемые на белом и цветных цементах, бетоны для самонапряженных конструкций - на напрягающем цементе, бетоны для специальных целей, получаемые на особых видах цемента — глиноземистом, безусадочном и т. Силикатные бетоны готовят на основе извести.

Для производства изделий в этом случае применяют автоклавный способ твердения. Гипсовые бетоны применяют для внутренних перегородок, подвесных потолков и элементов отделки зданий. Разновидностью этих бетонов являются гипсоцементно-пуццолановые бетоны, обладающие повышенной водостойкостью и более широкой областью применения объемные блоки санузлов, конструкции малоэтажных домов и др.

Шлакощелочные бетоны делают на молотых шлаках, затворенных щелочными растворами. Эти бетоны еще только начинают применяться в строительстве. Полимербетоны изготовляют на различных видах полимерного связующего, основу которого составляют смолы полиэфирные, эпоксидные, карбамидные и др.

Эти бетоны более пригодны для службы в агрессивных средах и особых условиях воздействия истирание, кавитация и т. Полимерцементные бетоны изготовляют и на смешанном связующем, состоящем из цемента и полимерного вещества. В качестве полимера используют, например, водорастворимые смолы и латексы. Свойства бетонов на неорганических вяжущих можно улучшать путем пропитки мономерами с последующим их отверждением в порах и капиллярах бетона.

Подобные материалы называют бетонополимерами. Специальные бетоны готовят с применением особых вяжущих веществ. Для кислотоупорных и жаростойких бетонов применяют жидкое стекло с кремнефтористым натрием, фосфатное и другие связующие. В качестве специальных вяжущих используют шлаковые, нефелиновые, стеклощелочные и др. Бетоны применяют для различных видов конструкций, изготовляемых на заводах: сборного железобетона, так возводимых непосредственно на месте эксплуатации в гидротехническом, дорожном строительстве и т.

В зависимости от области применения различают: обычный бетон для железобетонных конструкций фундаментов, колонн, балок, перекрытий, мостовых и других типов конструкций ; гидротехнический бетон для плотин, шлюзов, облицовки каналов, водопроводно-канализационных сооружений и т.

В зависимости от назначения бетоны должны удовлетворять определенным требованиям. Бетоны для обычных железобетонных конструкций должны иметь заданную прочность, главным образом при сжатии. Для конструкций, находящихся на открытом воздухе, важна еще морозостойкость. Бетоны для гидротехнических сооружений должны обладать высокой плотностью, водонепроницаемостью, морозостойкостью, достаточной прочностью, малой усадкой, стойкостью против выщелачивающего действия фильтрующих вод, в ряде случаев стойкостью по отношению к действию минерализованных вод и незначительно выделять теплоту при твердении.

Бетоны для стен отапливаемых зданий и легких перекрытий должны обладать необходимой прочностью, теплопроводностью, бетоны для полов — малой истираемостью и достаточной прочностью при изгибе, а бетоны для дорожных и аэродромных покрытий — еще и морозостойкостью. К бетонам специального назначения предъявляются требования, обусловленные особенностью их службы. Общие требования ко всем бетонам и бетонным смесям следующие: до затвердевания бетонные смеси должны легко перемешиваться, транспортироваться, укладываться обладать подвижностью и удобоукладываемостью , не расслаиваться; бетоны должны иметь определенную скорость твердения в соответствии с заданными сроками распалубки и ввода конструкции или сооружения в эксплуатацию; расход цемента и стоимость бетона должны быть минимальными.

Получить бетон, удовлетворяющий всем поставленным требованиям, можно при правильном проектировании состава бетона, надлежащем приготовлении, укладке и уплотнении бетонной смеси, а также при правильном выдерживании бетона в начальный период его твердения. Если вид и требования к свойствам бетона устанавливают в зависимости от вида и особенностей конструкции и условий ее эксплуатации, то требования к бетонной смеси определяются условиями изготовления конструкции, ее технологическими особенностями густотой армирования, сложностью формы и др.

Ячеистыми бетонами называют искусственные каменные материалы, состоящие из затвердевшего вяжущего вещества или смеси вяжущего и заполнителя с равномерно распределёнными в нем воздушными ячейками. Впервые ячеистые бетоны были получены в конце XIX в. Промышленное производство их началось в х годах ХХ столетия. Несколько позднее в Дании был изобретен пенобетон. В х годах были предложены способы получения ячеистых бетонов на основе цемента, извести и молотого кварцевого песка с последующей автоклавной обработкой формованных изделий.

В нашей стране освоен выпуск широкой номенклатуры изделий из ячеистых бетонов. Известно много типов ячеистых бетонов, отличающихся различными способами получения пористой структуры, видами вяжущего вещества, условиями формования, твердения и т. Ячеистые бетоны классифицируются в первую очередь по способу получения пористой структуры на газобетоны и пенобетоны. Получение пористой структуры возможно также путем испарения значительного количества вовлеченной воды.

По виду вяжущего могут быть получены следующие ячеистые бетоны: — на основе цемента — пенобетон и газобетон; — на основе известкового вяжущего — пеносиликат и газосиликат; — на основе магнезиального вяжущего — пеномагнезит и газомагнезит; — на основе гипсового вяжущего — пеногипс и газогипс. Часто наименование пенобетон и газобетон применяют для обозначения ячеистых бетонов и силикатобетонов вне зависимости от основного вида вяжущего.

Ячеистые бетоны могут рассматриваться как обычные бетоны, в которых роль крупного и, частично, мелкого заполнителя выполняют воздушные пузырьки. Такие бетоны обычно называют просто ячеистыми. Иногда в состав ячеистого бетона вводят крупный заполнитель в виде шлаковой пемзы, перлита, вермикулита, керамзита или других вспученных материалов.

Такие бетоны принято называть ячеисто-легкими. Ячеистые бетоны подразделяются по способу твердения. Различают ячеистые бетоны естественного и искусственного твердения. Ячеистые бетоны естественного твердения набирают прочность при хранении в обычных атмосферных условиях, а искусственного — при их обработке в условиях повышенных температур под воздействием водяного пара.

Соответственно и ячеистые бетоны подразделяются на автоклавные и неавтоклавные. Изделия из ячеистых бетонов в зависимости от требований, предъявляемых к их несущей способности, могут быть армированными и неармированными. В настоящее время ячеистые бетоны применяются в различных частях зданий и сооружений и выполняют всевозможные функции. В зависимости от свойств и области применения ячеистые бетоны делятся на теплоизоляционные и теплоизоляционно-конструктивные. В строительстве применяются различные изделия из ячеистых бетонов: панели, блоки и камни для наружных и внутренних стен и перегородок, плиты для утепленных кровель промышленных сооружений, скорлупы и сегменты для теплоизоляции трубопроводов, блоки для утепления и т.

Изделия из ячеистых бетонов выпускают различных размеров как сплошные, так, и пустотелые. Физико-механические свойства ячеистых бетонов зависят от способов образования пористости, равномерности распределения пор, их характера открытые, сообщающиеся или замкнутые , вида вяжущего, условий твердения, влажности и многих других технологических факторов.

Прочностные свойства ячеистых бетонов зависят в большом степени от вида вяжущего и условий твердения. Наиболее прочными являются автоклавные ячеистые бетоны, их прочность превышает прочность ячеистых бетонов естественного твердения в раз. Прочность материала стенок ячеистого бетона определяется количеством воды затворения. При твердении ячеистого бетона на основе портландцемента только определенная часть воды участвует в процессе твердения. Для ячеистых бетонов, в состав которых входит наряду с вяжущим определенное количество тонкодисперсных добавок, вместо водоцементного отношения принято определять так называемое водотвердное отношение.

Водотвердный фактор — это отношение воды затворения к сумме твердых веществ — вяжущего и добавок. Он влияет в определенной степени на прочность материала стенок ячеистого бетона. По мере увеличения водо-твердного отношения прочность ячеистых бетонов уменьшается. Этой зависимости подчиняются ячеистые бетоны на основе любого вяжущего.

Средством повышения прочности является уменьшение водотвердного отношения и применение в технологии вибрации как в период приготовления растворов, так и при вспучивании для газобетонов. Вибрационные воздействия вызывают увеличение подвижности цементного теста, растворов и бетонов и позволяют снижать водотвердное отношение.

Другим средством повышения прочности изделий из ячеистых бетонов является армирование. Теплофизические свойства ячеистых бетонов зависят от их влажности. Поэтому одним из основных свойств, характеризующих ячеистые бетоны, является водопоглощение.

Водопоглощение ячеистых бетонов зависит от вида вяжущего вещества: бетоны на основе извести, каустического магнезита, каустического доломита и гипса имеют большее водопоглощение, чем бетоны на портландцементе. Важным свойством для ячеистых бетонов является усадка. Изделия из неавтоклавного бетона дают большую усадку, чем из автоклавных. Пеногипс и пеномагнезит практически не дают усадки.

Температуростойкость ячеистых бетонов невысока. При дальнейшем повышении температуры имеет место дегидратация новообразований цементного камня, вследствие чего резко понижается прочность бетонов. Переход кварца из бета-модификации в альфа-модификацию сопровождается увеличением его объема и вызывает образование в бетоне трещин.

На прочности пенобетона и пеносиликата сказывается не только температура, но и скорость нагревания изделий. Быстрый нагрев скорее приводит к появлению трещин, чем медленный нагрев до той же температуры. Это свойство пеномагпезита определяется отношением к нагреванию кристаллическойхлорокиси магния.

Температуростойкость пеногипса незначительна, при температуре выше его применять не следует; дальнейшее повышение температуры вызывает дегидратацию двуводного гипса. Жароупорный пенобетон изготовляют из портландцемента, золы-уноса тепловых электростанций, пенообразователя и воды. Жароупорный пенобетон твердеет в естественных условиях.

Вследствие невысокой температуростойкости ячеистые бетоны относятся к изоляционно-строительным материалам и применяются для изоляции ограждающих конструкций зданий и сооружений. В настоящее время ведутся исследования по разработке способов снижения величины усадки, увеличения прочности пенобетона путем введения в состав бетона специальных добавок.

Модифицированный неавтоклавный пенобетон, содержащий микрокремнезем,имеет класс по прочности равный автоклавному ячеистому бетону. С применением микрокремнезема построен целый ряд сооружений, таких как комплекс высотных зданий в Чикаго, тоннель под Ла-Маншем, мост через пролив Нортумберленд в Канаде, буровые платформы в Норвежском море, автомобильные дороги высокого класса и т. Микрокремнезем получают при высокотемпературной обработке кремнеземосодержащих исходных материалов, связанной с процессом возгонки оксидов кремния.

При конденсации возгона в процессе охлаждения образуется мелкодисперсный коллоидообразный, большей частью аморфный материал. Преобладающий размер частиц микрокремнезема от 1 до 0,01 мкм и менее. Рентгеноструктурным анализом установлено наличие в микрокремнеземе оксида кремния в виде коусита — SiO, что придает ему высокую химическую активность в водных средах.

Микрокремнезем представляет собой рис. Рисунок 2 — Побочный пуццолановый продукт. Высокие свойства микрокремнезема улучшают такие характеристики бетона, как прочность на сжатие, прочность сцепления, износостойкость, морозостойкость, химическую стойкость и значительно снижают проницаемость.

Это позволяет длительное время противостоять внешним природным и производственным воздействиям средам. Кроме того, микрокремнезем активно применяется в производстве сухих строительных смесей, пенобетонах, бетона, резины, керамик, облицовочных плит и черепиц, огнеупорных масс; для мостостроения, дорожного строительства, при возведении жилых и производственных объектов, плотин и дамб, буровых платформ и скважин, коллекторных трасс и т.

Первые исследования МК в качестве добавок для бетонов и растворов были проведены в г. Марку цемента выбирают в зависимости от проектируемой прочности бетона при сжатии:. Для приготовления бетонной смеси применяется питьевая, а также любая вода, не содержащая вредных примесей кислот, сульфатов, жиров, растительных масел, сахара , препятствующих нормальному твердению бетона.

К добавкам для бетонов относятся неорганические и органические вещества или их смеси, за счет введения которых в контролируемых количествах направленно регулируются свойства бетонных смесей и бетонов либо бетонам придаются специальные свойства. В основу классификации добавок для бетонов положен эффект их действия.

По этому признаку добавки для бетонов делят на следующие группы:. Регулирующие реологические свойства бетонных смесей. К ним относятся пластифицирующие — увеличивающие подвижность бетонных смесей; стабилизирующие - предупреждающие расслоение; водоудерживающие - уменьшающие водоотделение.

Регулирующие схватывание бетонных смесей и твердение бетонов. К ним относятся добавки, замедляющие схватывание, ускоряющие схватывание и твердение, противоморозные, то есть обеспечивающие твердение бетона при отрицательных температурах. Добавки, регулирующие пористость бетонной смеси и бетона. К ним относятся воздухововлекающие, газообразующие и пенообразующие добавки, а также уплотняющие воздухоудаляющие или кольматирующие поры бетона. Добавки полифункционального действия, одновременно регулирующие различные свойства бетонных смесей и бетонов: пластифицирующе-воздухововлекающие; повышающие прочность бетона и газообразующе - пластифицирующие.

Минеральные порошки - заменители цемента. Это золы, молотые шлаки, отходы камнедробления и др. В качестве пластифицирующих добавок наибольшее распространение получили поверхностно-активные вещества ПАВ. Поверхностно-активные добавки представляют собой особую группу органических веществ, введение которых в бетонные смеси позволяет существенно улучшить их удобоукладываемость.

Вместе с тем поверхностно-активные добавки позволяют уменьшить водоцементное отношение и, соответственно, сократить расход цемента без снижения прочности материалов и изделий. Поверхностно-активные добавки, используемые в цементах, растворах и бетонах, по определяющему эффекту действия на цементные системы можно условно разделить на три группы: гидрофилизующие, гидрофобизующие и воздухововлекающие.

Гидрофилизующие добавки при затворении вяжущего водой предотвращают на определенный срок слипание отдельных цементных частиц между собой. Гидрофобизующие добавки, как правило, существенно повышают нерасслаиваемость, связанность бетонной смеси, находящейся в покое. В качестве гидрофобизующих добавок раньше применялись в основном природные продукты.

Развитие химической промышленности дало возможность широко использовать новые гидрофобизующие добавки — битумные дисперсии эмульсии и эмульсосуспензии , нафтеновые кислоты и их соли, окисленные, синтетические жирные кислоты и их кубовые остатки, кремнийорганические полимеры и др. Воздухововлекающие добавки позволяют получать бетонные смеси с некоторым дополнительным количеством воздуха.

Чтобы повысить пластичность смеси, обычно увеличивают объем вяжущего теста. Вовлекая воздух, объем теста увеличивается без введения лишнего цемента, поэтому удобоукладываемость такой системы повышается. К тому же воздухововлекающие добавки образуют и ориентированные слои, активные в смазочном отношении. Широко применяют воздухововлекающие добавки на основе смоляных кислот: смолу, нейтрализованную воздухововлекающую СНВ , омыленный древесный пек и др.

К ускорителям твердения цемента , увеличивающим нарастание прочности бетона, особенно в ранние сроки, относятся хлорид кальция, сульфат натрия, нитрит-нитрат-хлорид кальция и др. Пено- и газообразоватаели применяют для изготовления ячеистых бетонов. К пенообразователям относятся клееканифольные, смолосапониновые, алюмосульфонафтеновые добавки, а также пенообразователь ГК.

Комбинированные добавки, например пластификатор СДБ, ускоритель твердения хлористый кальций с ингибитором нитратом натрия , способствуют экономии цемента. При этом ускоритель твердения нейтрализует некоторое замедление твердения смеси в раннем возрасте. Специальные добавки обеспечивают получение водонепроницаемых растворов или бетонов, регулируют сроки схватывания и др. Приготовление бетонной смеси включает две основные технологические операции: дозировку исходных материалов и их перемешивание.

Важнейшим условием приготовления бетонной смеси с заданными показателями свойств, а также обеспечения постоянства этих показателей от замеса к замесу является точность дозировки составляющих материалов в соответствии с рабочим составом бетона. Дозирование материалов производят дозаторами мерниками периодического или непрерывного действия. Первые могут иметь ручное, полуавтоматическое управление. Наиболее совершенны автоматические дозаторы по массе, обладающие высокой точностью дозирования, малой продолжительностью цикла взвешивания и легкостью управления.

Перемешивание бетонной смеси производят в бетоносмесителях периодического и непрерывного действия. В бетоносмесителях периодического действия рабочие циклы машины протекают с перерывами, т. В бетоносмесителях непрерывного действия все три операции производят непрерывно. По способу перемешивания материалов бетоносмесители бывают с принудительным и гравитационным перемешиванием при свободном падении. В гравитационных бетоносмесителях перемешивание достигается вращением барабана, на внутренней поверхности которого имеются лопасти.

На автоматизированных бетонных заводах применяют бетоносмесители непрерывного действия, в которых бетонная смесь принудительно перемешивается и одновременно перемещается от загрузочного отверстия к другому концу, где происходит ее выгрузка. При соответствующем режиме вибрации, когда силы трения и сцепления между частицами смеси нарушены, а силам тяжести противодействует значительно превосходящее их давление возбуждения в смеси, последняя переходит во взвешенное состояние с высокой подвижностью, что способствует интенсивному перемешиванию смеси.

Транспортирование бетонной смеси к месту укладки должно обеспечить сохранение ее однородности и степени подвижности. При длительной перевозке бетонная смесь загустевает вследствие гидратации цемента, поглощения воды заполнителями и испарения, однако подвижность смеси к моменту укладки ее должна быть не меньше проектной. При выборе способа транспортировки необходимо учитывать дальность и скорость перевозки, подвижность смеси и экономичность способа.

На заводах бетонные смеси транспортируют бетонораздатчиками, самоходными тележками, ленточными транспортерами; в цехах малой и средней мощности — электротельферами и электрокарами. Подвижные смеси можно транспортировать на большие расстояния по трубам с помощью пневматических установок.

На строительные площадки, где ведутся бетонные работы, бетонную смесь доставляют в автобетоносмесителях. Железобетон представляет собой строительный материал, в котором выгодно сочетается совместная работа бетона и стали, крайне отличающихся своими механическими свойствами. Бетон, как и всякий каменный материал, хорошо сопротивляется сжимающим нагрузкам, но он хрупок и слабо противодействует растягивающим напряжениям.

Прочность бетона при растяжении примерно в 10—15 раз меньше прочности при сжатии. В результате этого бетон невыгодно использовать для изготовления конструкций, в которых возникают растягивающие напряжения. Сталь же, обладая очень высоким пределом прочности при растяжении, способна воспринимать растягивающие напряжения, возникающие в железобетонном элементе.

Для строительства элементов, подверженных изгибу, целесообразно применять железобетон. При работе таких элементов возникают напряжения двух видов: растягивающие и сжимающие. При этом сталь воспринимает первые напряжения, а бетон — вторые, и железобетонный элемент в целом успешно противостоит изгибающим нагрузкам.

Таким образом, сочетается работа бетона, и стали в одном материале — железобетоне. Возможность совместной работы в железобетоне двух резко различных по своим свойствам материалов определяется следующими важнейшими факторами: прочным сцеплением бетона со стальной арматурой, вследствие чего при возникновении напряжения в железобетонной конструкции оба материала работают совместно; почти одинаковым коэффициентом температурного расширения стали и бетона, чем обеспечивается полная монолитность железобетона; бетон не только не оказывает разрушающего влияния на заключенную в нем сталь, но и предохраняет ее от коррозии.

Различают два вида предварительного напряжения арматуры: до затвердения бетона и после приобретения бетоном определенной прочности. Если напряжение арматуры производится до бетонирования, то уложенная в форму арматура растягивается и в таком состоянии закрепляется в форме.

ЗИМНЯЯ ДОБАВКА ДЛЯ СТРОИТЕЛЬНОГО РАСТВОРА

Общие требования ко всем бетонам и бетонным смесям следующие: до затвердевания бетонные смеси должны легко перемешиваться, транспортироваться, укладываться обладать подвижностью и удобоукладываемостью , не расслаиваться; бетоны должны иметь определенную скорость твердения в соответствии с заданными сроками распалубки и ввода конструкции или сооружения в эксплуатацию; расход цемента и стоимость бетона должны быть минимальными.

Получить бетон, удовлетворяющий всем поставленным требованиям, можно при правильном проектировании состава бетона, надлежащем приготовлении, укладке и уплотнении бетонной смеси, а также при правильном выдерживании бетона в начальный период его твердения. Если вид и требования к свойствам бетона устанавливают в зависимости от вида и особенностей конструкции и условий ее эксплуатации, то требования к бетонной смеси определяются условиями изготовления конструкции, ее технологическими особенностями густотой армирования, сложностью формы и др.

Ячеистыми бетонами называют искусственные каменные материалы, состоящие из затвердевшего вяжущего вещества или смеси вяжущего и заполнителя с равномерно распределёнными в нем воздушными ячейками. Впервые ячеистые бетоны были получены в конце XIX в. Промышленное производство их началось в х годах ХХ столетия. Несколько позднее в Дании был изобретен пенобетон. В х годах были предложены способы получения ячеистых бетонов на основе цемента, извести и молотого кварцевого песка с последующей автоклавной обработкой формованных изделий.

В нашей стране освоен выпуск широкой номенклатуры изделий из ячеистых бетонов. Известно много типов ячеистых бетонов, отличающихся различными способами получения пористой структуры, видами вяжущего вещества, условиями формования, твердения и т. Ячеистые бетоны классифицируются в первую очередь по способу получения пористой структуры на газобетоны и пенобетоны. Получение пористой структуры возможно также путем испарения значительного количества вовлеченной воды.

По виду вяжущего могут быть получены следующие ячеистые бетоны: — на основе цемента — пенобетон и газобетон; — на основе известкового вяжущего — пеносиликат и газосиликат; — на основе магнезиального вяжущего — пеномагнезит и газомагнезит; — на основе гипсового вяжущего — пеногипс и газогипс.

Часто наименование пенобетон и газобетон применяют для обозначения ячеистых бетонов и силикатобетонов вне зависимости от основного вида вяжущего. Ячеистые бетоны могут рассматриваться как обычные бетоны, в которых роль крупного и, частично, мелкого заполнителя выполняют воздушные пузырьки. Такие бетоны обычно называют просто ячеистыми. Иногда в состав ячеистого бетона вводят крупный заполнитель в виде шлаковой пемзы, перлита, вермикулита, керамзита или других вспученных материалов.

Такие бетоны принято называть ячеисто-легкими. Ячеистые бетоны подразделяются по способу твердения. Различают ячеистые бетоны естественного и искусственного твердения. Ячеистые бетоны естественного твердения набирают прочность при хранении в обычных атмосферных условиях, а искусственного — при их обработке в условиях повышенных температур под воздействием водяного пара.

Соответственно и ячеистые бетоны подразделяются на автоклавные и неавтоклавные. Изделия из ячеистых бетонов в зависимости от требований, предъявляемых к их несущей способности, могут быть армированными и неармированными. В настоящее время ячеистые бетоны применяются в различных частях зданий и сооружений и выполняют всевозможные функции. В зависимости от свойств и области применения ячеистые бетоны делятся на теплоизоляционные и теплоизоляционно-конструктивные.

В строительстве применяются различные изделия из ячеистых бетонов: панели, блоки и камни для наружных и внутренних стен и перегородок, плиты для утепленных кровель промышленных сооружений, скорлупы и сегменты для теплоизоляции трубопроводов, блоки для утепления и т. Изделия из ячеистых бетонов выпускают различных размеров как сплошные, так, и пустотелые.

Физико-механические свойства ячеистых бетонов зависят от способов образования пористости, равномерности распределения пор, их характера открытые, сообщающиеся или замкнутые , вида вяжущего, условий твердения, влажности и многих других технологических факторов. Прочностные свойства ячеистых бетонов зависят в большом степени от вида вяжущего и условий твердения. Наиболее прочными являются автоклавные ячеистые бетоны, их прочность превышает прочность ячеистых бетонов естественного твердения в раз.

Прочность материала стенок ячеистого бетона определяется количеством воды затворения. При твердении ячеистого бетона на основе портландцемента только определенная часть воды участвует в процессе твердения. Для ячеистых бетонов, в состав которых входит наряду с вяжущим определенное количество тонкодисперсных добавок, вместо водоцементного отношения принято определять так называемое водотвердное отношение. Водотвердный фактор — это отношение воды затворения к сумме твердых веществ — вяжущего и добавок.

Он влияет в определенной степени на прочность материала стенок ячеистого бетона. По мере увеличения водо-твердного отношения прочность ячеистых бетонов уменьшается. Этой зависимости подчиняются ячеистые бетоны на основе любого вяжущего. Средством повышения прочности является уменьшение водотвердного отношения и применение в технологии вибрации как в период приготовления растворов, так и при вспучивании для газобетонов.

Вибрационные воздействия вызывают увеличение подвижности цементного теста, растворов и бетонов и позволяют снижать водотвердное отношение. Другим средством повышения прочности изделий из ячеистых бетонов является армирование. Теплофизические свойства ячеистых бетонов зависят от их влажности.

Поэтому одним из основных свойств, характеризующих ячеистые бетоны, является водопоглощение. Водопоглощение ячеистых бетонов зависит от вида вяжущего вещества: бетоны на основе извести, каустического магнезита, каустического доломита и гипса имеют большее водопоглощение, чем бетоны на портландцементе. Важным свойством для ячеистых бетонов является усадка. Изделия из неавтоклавного бетона дают большую усадку, чем из автоклавных. Пеногипс и пеномагнезит практически не дают усадки.

Температуростойкость ячеистых бетонов невысока. При дальнейшем повышении температуры имеет место дегидратация новообразований цементного камня, вследствие чего резко понижается прочность бетонов. Переход кварца из бета-модификации в альфа-модификацию сопровождается увеличением его объема и вызывает образование в бетоне трещин. На прочности пенобетона и пеносиликата сказывается не только температура, но и скорость нагревания изделий.

Быстрый нагрев скорее приводит к появлению трещин, чем медленный нагрев до той же температуры. Это свойство пеномагпезита определяется отношением к нагреванию кристаллическойхлорокиси магния. Температуростойкость пеногипса незначительна, при температуре выше его применять не следует; дальнейшее повышение температуры вызывает дегидратацию двуводного гипса. Жароупорный пенобетон изготовляют из портландцемента, золы-уноса тепловых электростанций, пенообразователя и воды.

Жароупорный пенобетон твердеет в естественных условиях. Вследствие невысокой температуростойкости ячеистые бетоны относятся к изоляционно-строительным материалам и применяются для изоляции ограждающих конструкций зданий и сооружений. В настоящее время ведутся исследования по разработке способов снижения величины усадки, увеличения прочности пенобетона путем введения в состав бетона специальных добавок. Модифицированный неавтоклавный пенобетон, содержащий микрокремнезем,имеет класс по прочности равный автоклавному ячеистому бетону.

С применением микрокремнезема построен целый ряд сооружений, таких как комплекс высотных зданий в Чикаго, тоннель под Ла-Маншем, мост через пролив Нортумберленд в Канаде, буровые платформы в Норвежском море, автомобильные дороги высокого класса и т. Микрокремнезем получают при высокотемпературной обработке кремнеземосодержащих исходных материалов, связанной с процессом возгонки оксидов кремния. При конденсации возгона в процессе охлаждения образуется мелкодисперсный коллоидообразный, большей частью аморфный материал.

Преобладающий размер частиц микрокремнезема от 1 до 0,01 мкм и менее. Рентгеноструктурным анализом установлено наличие в микрокремнеземе оксида кремния в виде коусита — SiO, что придает ему высокую химическую активность в водных средах. Микрокремнезем представляет собой рис. Рисунок 2 — Побочный пуццолановый продукт. Высокие свойства микрокремнезема улучшают такие характеристики бетона, как прочность на сжатие, прочность сцепления, износостойкость, морозостойкость, химическую стойкость и значительно снижают проницаемость.

Это позволяет длительное время противостоять внешним природным и производственным воздействиям средам. Кроме того, микрокремнезем активно применяется в производстве сухих строительных смесей, пенобетонах, бетона, резины, керамик, облицовочных плит и черепиц, огнеупорных масс; для мостостроения, дорожного строительства, при возведении жилых и производственных объектов, плотин и дамб, буровых платформ и скважин, коллекторных трасс и т.

Первые исследования МК в качестве добавок для бетонов и растворов были проведены в г. Тогда был получен первый патент на модификацию цементных систем путем введения в их состав МК. В период c по гг. К началу хгг. В Канаде использование микрокремнезема в бетоне было одобрено в году. В Канаде такие смеси появились в году. На данный момент микрокремнезем в Европе используется везде — от бетонных блоков до нефтяных сооружений [ 8 ].

Микрокремнезем обычно добавляется в качестве дополнительного вяжущего материала в процентном отношении от первоначального содержания цемента, в зависимости от типа или требуемого качества бетона. Общее правило заключается в тщательном перемешивании для обеспечения максимальной дисперсности микрокремнезема в бетоне. В целях улучшения дисперсности в большинство бетонов с содержанием микрокремнезема вводят пластификатор или суперпластификатор.

Бетоны, содержащие добавки микрокремнезема, обладают большей способностью к сцеплению, чем обычные смеси на портландцементе, и зачастую показывают более низкую удобообрабатываемость с точки зрения осадки конуса. Частицы микрокремнезема, имеющие абсолютно сферическую форму, нейтрализуют этот эффект, обеспечивая лучшую удобоукладываемость при данной осадке конуса.

Однако, во избежание добавления на участке хорошо известного пластификатора — воды, в смесь вводится суперпластификатор для достижения высокой удобообрабатываемости при сохранении правильного водоцементного отношения. Высокое сцепление и стабильность смеси означает, что бетоны с содержанием микрокремнезема являются наиболее подходящими для торкретирования, подачи насосом и подводного бетонирования.

Торкрет-бетон в этом случае отличается меньшим отскоком, значительно меньшим пылеобразованием и лучшими строительными характеристиками. При подаче насосом бетон можно подавать выше и дальше, чем обычные смеси, и под более низким давлением. Бетон с содержанием кремнезема также можно укладывать под водой обычными методами подводного бетонирования, без всяких дополнительных примесей.

Вследствие заполнения пустот и высокого сцепления смеси в свежеуложенном бетоне наблюдается незначительное выступание воды. Это означает, что свежеуложенный бетон необходимо должным образом выдерживать сразу по завершении отделочных работ. Размер частиц микрокремнезема, в раз меньших, чем цемент, в сочетании с высоким содержанием двуокиси кремния создает очень мощный пуццолановый эффект.

При таком размере частиц 40 кг микрокремнезема, составляющие среднюю дозировку, будут иметь площадь поверхности около одного квадратного километра, вступающей в реакцию с гидроокисью кальция, высвобождаемого по мере гидратации цемента. Это означает, что микрокремнезем оказывает более ранний эффект, чем другие пуццолановые добавки. Пуццолановая реакция микрокремнезема повышает гидратацию силиката кальция.

Наблюдается отчетливое изменение пористой структуры бетона с содержанием микрокремнезема в сторону уменьшения числа капиллярных пор и увеличения числа более мелких гелевых пор. Повышение гидратации силиката кальция и снижение числа капиллярных пор обеспечивают две основные характеристики бетона с содержанием микрокремнезема — повышенную прочность и повышенную непроницаемость.

Двойной эффект придает бетону большую устойчивость к физическим истирание, эрозия и ударное разрушение и химическим воздействиям проникновение воды, сульфатов, хлоридов, органических веществ и кислот. Именно благодаря повышенной стойкости бетона с добавками микрокремнезема он использовался в Персидском заливе, где химическое воздействие и температура быстро разрушают железобетон и некоторые сооружения приходится сносить уже через десять лет.

Ожидаемый срок эксплуатации сооружений, строящихся сегодня, составляет более 50 лет. Снижение негативов твердения конструкций и изделий из пескобетона М вне помещений [ 11 ]. При твердении изделий из пескобетона М в формах на улице или наружных цементных стяжек. Рисунок 3 — Снижение негативов твердения конструкций и изделий из пескобетона М вне помещений. Это приводит к появлению корки на поверхности, чрезвычайно склонной к трещинообразованию, а также волнистости поверхности после твердения из-за разной степени уплотнения неравномерно нагретых нижних слоев.

Добавки микрокремнезема отчасти аккумулируют солнечное тепло и способствуют быстрой конвекции тепла через бетон благодаря заполнению пустот, а также блокируют микро и макропоры выхода воды на поверхность, что снижает негативы быстрого испарения. Одной из основных сфер применения микрокремнезема в Великобритании являются покрытия, где бетон с микрокремнеземом использовался в ряде крупных проектов. Его применение в данной области обусловлено быстрым нарастанием прочности и низкой усадкой в сочетании с высокой устойчивостью к истиранию и химической стойкостью.

Такие бетоны могут достигать очень высокой ранней прочности. Они нашли широкое применение там, где осуществляется выдерживание во влажном режиме [ 6 ]. Известно, что влияние условий и режима термообработки является важным фактором при формировании структуры готовых изделий, их физико-механических и эксплуатационных свойств.

Однако более полные физико-химические исследования поведения микрокремнезема при нагревании проведены недостаточно. Таким образом, данная работа посвящена исследованию возможности получения теплоизоляционного бетона с улучшенными свойствами с применением добавки микрокремнезема повышенная прочность, температура использования. При написании данного реферата магистерская работа еще не завершена. Окончательное завершение: декабрь года. Полный текст работы и материалы по теме могут быть получены у автора или его руководителя после указанной даты.

ДонНТУ Портал магистров. Калинчук Виктория Витальевна Факультет экологии и химической технологии Кафедра прикладной экологии и охраны окружающей среды Специальность «Химическая технология тугоплавких неметаллических и силикатных материалов» Исследование влияния добавки микрокремнезема на свойства теплоизоляционного бетона Научный руководитель: д. Шевченко Алла Юрьевна.

Недостатки металлической опалубки — высокая стоимость, значительная масса и высокая теплопроводность. Тем не менее в настоящее время металлические опалубки находят все большее применение из-за их высокой оборачиваемости и получения гладкой и ровной бетонной поверхности в результате ее использования. Пластики объединяют достоинства стали прочность, многократная оборачиваемость, способность не видоизменяться при разнообразных температурно-влажностных режимах и достоинства древесины незначительная масса и легкость обработки.

Исключаются и недостатки этих материалов - деформативность древесины и коррозия стали. Малая жесткость, повышенная гибкость и относительно высокая стоимость пластиков делают их пока мало конкурентоспособными с другими материалами. Пластики в основном используют в качестве тонких защитных пленок, наносимых на поверхности палубы из древесины и металла. Находят применение пластмассовые опалубки , особенно армированные стекловолокном.

Они обладают высокими показателями прочности при статической нагрузке, химически совместимы с бетоном. Опалубки из полимерных материалов отличаются небольшой массой, стабильностью формы и устойчивостью против коррозии. Возможные повреждения легко устраняют нанесением нового покрытия. Тонкостенные армоцементные и железобетонные плиты — это плиты, у которых наружная сторона гладкая, а внутренняя — неровная, с выступающей арматурой.

Это позволяет при укладке в такую конструкцию монолитного бетона достигать высокой степени его соединения с данным видом опалубки. Эта опалубка называется несъемной , так как остается в конструкции и работает как её составная часть.

Древесно-стружечные ДСП и древесно-волокнистые плиты ДВП по своим характеристикам находятся между древесиной и водостойкой фанерой и их используют в основном для устройства палубы, реже для крепления каркаса опалубки. Использование композитов с токопроводящим наполнителем позволяет получать греющие покрытия с регулируемыми режимами теплового воздействия на бетон.

Опалубку классифицируют по функциональному назначению в зависимости от типа бетонируемых конструкций и, в общем виде, подразделяют:. В результате практического использования в отечественном и зарубежном массовом промышленном и гражданском строительстве созданы и с успехом применяют в зависимости от характеристик возводимых сооружений, материала опалубки, условий и методов производства работ, целый ряд конструктивно отличающихся опалубок, наибольшее распространение из которых получили следующие:.

Разборно-переставная мелкощитовая опалубка из мелких щитов площадью до 2 м 2 и массой до 50 кг, из которых можно собирать опалубку для бетонирования любых конструкций, как горизонтальных, так и вертикальных, в том числе массивов, фундаментов, стен, перегородок, колонн, балок, плит перекрытий и покрытий. Крупнощитовая опалубка из крупноразмерных щитов площадью до 20 м 2 , оборудованных несущими или поддерживающими элементами, подкосами, регулировочными и установочными домкратами, подмостями для бетонирования.

Она предназначена для возведения крупноразмерных и массивных конструкций, в том числе протяженных или повторяющихся стен, перекрытий зданий и сооружений различного назначения. Горизонтально перемещаемая опалубка, назначение которой в возведении линейно-протяженных сооружений длиной от 3 м, решаемых как в виде отдельной стены подпорная стенка , двух параллельных стен открытый коллектор , так и закрытого сооружения, состоящего из стен и покрытия необходимой заданной длины.

Объемно-переставная опалубка , нашедшая применение при одновременном возведении стен и перекрытий зданий. Опалубка состоит из блоков-секций Г- и П-образной формы, конструкция позволяет секциям сдвигаться внутрь. Секции опалубки соединяют между собой по длине, образуя сразу несколько параллельных рядов с расстояниями между блоками, равными толщинам стен. Это позволяет после установки опалубки, укладки арматурных каркасов одновременно осуществлять бетонирование стен и примыкающих к ним участков перекрытий.

Туннельная опалубка предназначена для возведения замкнутого контура туннелей, возводимых закрытым способом. В настоящее время туннельная опалубка нашла широкое применение для одновременного бетонирования зданий коридорной системы больницы, санатории, дома отдыха и др. Подъемно-переставную опалубку используют для возведения конструкций большой высоты постоянной и изменяющейся геометрии поперечного сечения — труб, градирен, мостовых опор и др.

Скользящая опалубка , применяемая при возведении вертикальных конструкций зданий и сооружений большой высоты. Опалубка представляет собой систему, состоящую из щитов, рабочего пола, подмостей, домкратов, домкратных стержней, закрепленных на домкратных рамах и станции управления подъемом опалубочной системы. Опалубка используется для возведения наружных и внутренних стен жилых зданий, ядер жесткости, а также дымовых труб, силосов, градирен и других сооружений высотой более 40 м и толщиной стен не менее 25 см.

Блочную опалубку можно применять для опалубливания внутренних поверхностей лестничных клеток, лифтовых шахт, замкнутых ячеек стен жилых зданий, так и наружных поверхностей столбчатых фундаментов, ростверков, массивов и др.

Вертикально перемещаемая опалубка, предназначенная для возведения сооружений башня, градирня, жилой дом или их частей лифтовая шахта жилого дома и отдельных частей зданий и сооружений высотой на этаж участок лифтовой шахты, пространственная замкнутая ячейка из 4-х стен здания. Несъемная опалубка, применяемая при возведении конструкций без распалубливания, с устройством в процессе работ одновременно гидроизоляции, облицовки, утепления и др.

Специфика опалубки в том, что после укладки в нее бетонной смеси, опалубка остается в теле конструкции, составляя с ней одно целое. В настоящее время несъемную опалубку используют не только для бетонирования отдельных конструкций, но и возведения полностью зданий. Это стало возможным при использовании в качестве опалубки пенополистирольных плит толщиной Несъемная опалубка состоит из изготовленных в заводских условиях опалубочных элементов стен и перекрытий, выполняющих одновременно функции опалубки, утеплителя и звукоизоляции стен и перекрытий, а также основания для нанесения отделочных фактурных покрытий.

Для несъемной опалубки может быть использована тканая металлическая сетка, железобетонные, армо- и асбестобетонные плиты, плиты из пенопласта, стеклоцемента и др. Данный вид опалубки можно применять в стесненных условиях производства работ и при экономической целесообразности ее использования. Специальные опалубки не попадают в номенклатуру основных типов, хотя зачастую позволяют возводить аналогичные конструкции.

Это пневматическая опалубка, состоящая из надутой прорезиновленной ткани, которая создает опалубку будущей пространственной конструкции, поддерживающих и несущих элементов. В рабочем положении пневматическую опалубку поддерживают избыточным давлением воздуха и она служит для бетонирования тонкостенных сооружений и конструкций криволинейного очертания.

Можно отметить и необорачиваемую стационарную опалубку, назначение которой в бетонировании отдельных мест, участков и даже конструкций, для опалубливания которых использование индустриальных опалубок неэкономично или технически нерационально. Это опалубка одноразовая, собираемая из отходов производства. Рациональными являются комбинированные конструкции, в которых несущие и поддерживающие элементы — из металла, а соприкасающиеся с бетоном — из пиломатериалов, водостойкой фанеры, древесностружечных плит, пластика.

Технология процессов опалубливания. Технологический процесс устройства опалубки состоит в следующем. Щиты опалубки устанавливают вручную или краном и закрепляют в проектном положении. После бетонирования и достижения бетоном прочности, допускающей распалубливание, опалубочные и поддерживающие устройства снимают и переставляют на новую позицию.

Различают два основных вида опалубочных форм разборно-переставной опалубки: мелкощитовую и крупнощитовую. Мелкощитовая опалубка, состоит из инвентарных щитов различных типоразмеров с инвентарными поддерживающими устройствами и креплениями. Габариты основных щитов унифицированной опалубки подчинены, как правило, одному модульному размеру мм по ширине и мм по высоте.

В мелкощитовой опалубке можно собирать формы практически для любых бетонных и железобетонных конструкций - стен, фундаментов, колонн, ригелей, плоских, часторебристых и кессонных перекрытий и покрытий, бункеров, башен и др. Универсальность опалубки достигается возможностью соединения щитов по любым граням. Основной и принципиальной особенностью щитов опалубки, являются замкнутые профили стальных или алюминиевых рам, которые вместе с ребрами жесткости, тоже выполненных из замкнутых профилей, создают опалубочные соединения, которые противостоят нагрузкам кручения и позволяют при этом упростить установку и горизонтальное выравнивание, а при опалубливании высотных конструкций повышают безопасность производства работ.

Комплексная система опалубки предназначена для опалубливания любых горизонтальных и вертикальных строительных конструкций, начиная с самых мелких сооружений. Кроме замкнутого профиля рам опалубочных щитов предложен опалубочный замок, который обеспечивает быстрое достаточно удара молотком и качественное соединение двух соседних щитов по горизонтали или вертикали в любом месте конструктивной рамы.

Палуба из многослойной водостойкой фанеры покрыта специальным порошковым или другим покрытием, резко снижающим сцепление с бетоном. В профиль рам опалубки вварены втулки, которые предусмотрены для пропуска и удобного введения натяжных стержней, для взаимного соединения противостоящих щитов опалубки.

Плоские щиты мелкощитовой опалубки имеют площадь до 1,5…2,0 м 2 , массу не более 50 кг для возможности их установки вручную. При наличии монтажного крана на объекте строительства щиты можно предварительно собирать в опалубочную панель или пространственный блок опалубки площадью до 15 м 2. Технология производства работ с мелкощитовой опалубкой аналогична работам с крупнощитовой опалубкой.

Крупнощитовая разборно-переставная опалубка включает щиты размером Масса таких щитов не имеет жестких ограничений, поскольку монтаж и демонтаж их осуществляют только при помощи подъемных механизмов. В крупнощитовой опалубке щиты могут соединяться между собой по любым граням и при необходимости доукомплектовываться мелкими щитами той же системы.

Как и в мелкощитовой опалубке, палуба может быть выполнена из стального листа или водостойкой фанеры. При устройстве ленточных фундаментов опалубку формируют из инвентарных щитов, которые между собой соединяют при помощи замков разной конструкции. В случае вставок между щитами доборных элементов шириной до 15 см могут быть использованы удлиненные замки.

Поперечный размер конструкции фиксируют временными распорками на подкосах и торцевыми щитами опалубки. Для восприятия бокового давления бетонной смеси противолежащие панели соединяют винтовыми стяжками тяжами. Работы по установке и разборке опалубки должны быть максимально механизированы. Первоначально производят укрупнительную сборку щитов опалубки в опалубочную панель на полную высоту ленточного фундамента и площадью около 20 м 2.

К опалубочным панелям предъявляют повышенные требования к их жесткости и несущей способности. Щитовая опалубка ступенчатых фундаментов стаканного типа под колонну состоит из отдельных коробов, устанавливаемых друг на друга. Короба в свою очередь собирают из двух пар щитов — «закладных» и «накрывных» , соединенных между собой винтовыми стяжками.

Опалубка стен состоит из модульных щитов, которые могут собираться в опалубочные панели практически любых размеров и конфигурации. Каркас опалубочных щитов изготовлен из высокоточного профиля из алюминиевых сплавов, поперечное сечение которого обеспечивает установку палубы из ламинированной фанеры толщиной 18 и 21 мм, торцы которой конструктивно защищены самим алюминиевым профилем и герметиком.

В комплект опалубки входят также подкосы для установки щитов, навесные консольные подмости для бетонирования, замки для соединения щитов и винтовые стяжки. Каркасы щитов изготавливают в кондукторах, обеспечивающих неплоскостность поверхностей не более 1 мм, разность диагоналей каркасов — не более 3 мм. На палубе щитов не допускаются трещины, заусеницы и местные отклонения глубиной более 2 мм.

При креплении палубы из водостойкой ламинированной фанеры на каркасах щитов потайная головка шурупов может выходить на плоскость фанеры не более 0,1 мм. Крупнощитовая опалубка обеспечивают опалубливание монолитных конструкций с модулем мм. Ширина рядовых щитов опалубки от 0,3 до 1,2 м с шагом 0,3 м, стандартная высота 1,2, 2 и 3 м при массе щитов от 42 до кг.

Крупнощитовая опалубка стен состоит из щитов опалубки, подмостей, навешиваемых на эти щиты, раскрепляющих подкосов и элементов раскрепления. Щиты в опалубочные панели собирают посредством центрирующих замков. Для выверки панели опалубки в проектном положении опалубка снабжена подкосами, винтовые стяжные муфты которых позволяют регулировать установку панели в вертикальной плоскости. В комплект опалубки может входить компенсационный элемент шириной 0,3 м и удлиненные замки, которые находят применение при необходимости иметь в опалубке вставки из брусков шириной до 15 см при бетонировании конструкций немодульных размеров.

Комплект опалубки позволяет при необходимости выполнять угловые соединения щитов, стыки примыканий стен, устройство примыканий-компенсаторов и других возможных вариантов примыкания щитов опалубки друг к другу. Для возведения наружных стен здания предусмотрены специальные подмости, представляющие собой цельнометаллические кронштейны с щитами настила и ограждениями.

Панели опалубки раскрепляют посредством винтовых стяжек и гаек, воспринимающих давление бетонной смеси. Для организации рабочих мест на высоте при приемке и укладке бетонной смеси, на опалубке предусмотрено крепление подмостей с ограждениями, которые навешивают на каркас щитов опалубки. При монтаже и демонтаже опалубки на высоте по периметру и внутри здания щиты опалубки должны быть ограждены инвентарными защитными приспособлениями. Щиты опалубки выполнены в соответствии с единым модулем, они универсальны и взаимозаменяемы, сборка, установка и соединение щитов между собой может осуществляться в вертикальном и горизонтальном положении.

В ребрах каркаса предусмотрены отверстия для навески кронштейнов и установки подкосов. Для соединения щитов между собой используют замки — не менее трех замков по высоте щита: два замка — на высоте мм от низа и верха щита и третий замок — в центральной части щита. Если при опалубливании поверхности предусмотрена укладка горизонтального щита сверху на ранее установленные вертикальные щиты, то по длине горизонтального щита должны быть предусмотрены три замковых соединения с вертикальными щитами.

Во время установки подкосов и навески кронштейнов подвесных подмостей их закрепляют через отверстия в ребрах щитов опалубки независимо от установки щита — вертикально или горизонтально. При монтаже опалубки стен отдельными щитами устанавливают по два подкоса на каждый щит, при монтаже панелями — через Кронштейны для укладки рабочего настила закрепляют к щитам опалубки с шагом 1, В процессе установки щитов и панелей опалубки стен по нанесенным на перекрытиях рискам их прижимают к бетонному цоколю и приводят в вертикальное положение при помощи стяжных муфт подкосов.

Точность установки проверяют уровнем или по отвесу. После монтажа противоположных щитов опалубки стен, щиты скрепляют между собой при помощи винтовых стяжек, располагая не менее трех стяжек по высоте щита. Винтовые стяжки, устанавливаемые между противоположными щитами, пропускают через стальные втулки, втулки и конуса из пластмассы и пластика, длина которых должна соответствовать толщине бетонируемой стены. Конуса защищают отверстия в палубе от попадания в них бетонной смеси, втулки облегчают вытаскивание винтовых стяжек после бетонирования в процессе распалубливания.

Щиты скрепляют путем затягивания гаек винтовых стяжек. Для исключения при затягивании гаек местных деформаций полого сечения каркаса щитов, применяют широкополые шайбы. После установки щитов опалубки все неиспользованные сквозные отверстия в опалубке должны быть заглушены специальными деревянными или пластмассовыми пробками во избежание вытекания из этих отверстий бетона в процессе бетонирования.

Щиты и панели наружных стен монтируют с рабочих подмостей, закрепленных на стенах предыдущего этажа. Навеску подмостей осуществляют следующим образом. При бетонировании стен в них остаются сквозные отверстия от винтовых стяжек щитов опалубки. При установке подмостей с помощью монтажного крана, в эти отверстия пропускают болты крепления низа опор рабочих подмостей, с внутренней стороны стен эти болты закрепляют с помощью гаек.

Тем самым подмости плотно прижимаются к забетонированной стене нижележащего этажа. В первую очередь монтируют щиты панели наружной опалубки, их устанавливают на рабочие подмости, выверяют и закрепляют при помощи подкосов. Далее с перекрытия устанавливают внутренние щиты панели опалубки, которые последовательно в процессе установки прикрепляют к наружным щитам при помощи винтовых стяжек. Подъем и установка щитов и панелей опалубки осуществляют специальным захватом, закрепленным на канатных стропах, за одну точку для отдельного щита или две точки — для опалубочной панели.

Опалубку стен можно монтировать как отдельными щитами, так и предварительно собирать в панели. Сборку панелей из отдельных щитов необходимо осуществлять на специально подготовленной площадке в зоне действия монтажного крана. Длина панелей, собранных из щитов не должна превышать по длине 8 м.

Демонтаж опалубки стен производят укрупненными панелями из На демонтируемой панели откручивают гайки винтовых стяжек, вытаскивают тяжи. Затем при помощи подкосов щиты отрывают от бетона. Отсоединенную панель переносят краном на склад для осмотра, ремонта, и если необходимо, смазки. Опалубка колонн оборудована подкосами для установки, выверки и распалубливания, а также навесными подмостями с ограждениями.

При установке опалубки колонн первоначально на бетонном основании перекрытии размечают место ее установки риски геометрических осей, грани положения колонн. Устанавливаемый арматурный каркас первоначально соединяют с каркасом нижерасположенной колонны, дополнительно устанавливают пластмассовые кольца или приваривают к каркасу горизонтальные стержни на высоте мм от низа и верха колонн для обеспечения необходимого защитного слоя бетона в процессе бетонирования.

Первоначально устанавливают два соседних щита по рискам и маякам и раскрепляют подкосами. Нижние опоры подкосов жестко крепят к перекрытию и при помощи винтов подкосов щиты приводят в вертикальное положение. Затем устанавливают оставшиеся два соседних щита, которые также приводят в вертикальное положение. Противоположные щиты скрепляют между собой винтовыми стяжками, их устанавливают по четыре штуки по высоте щита.

Не использованные отверстия в щитах должны быть заглушены специальными пробками деревянными или пластмассовыми во избежание вытекания из полости бетонной смеси. Консольные подмости устанавливают с передвижных вышек. На них устраивают рабочий настил из щитов с защитным ограждением из досок, что позволит безопасно выполнять работы по бетонированию колонн. Перед бетонированием производят окончательную выверку установленной опалубки и всех ее креплений.

Вариант соединения щитов колонн между собой предусматривает крепление посредством хомута, состоящего из четырех кронштейнов, соединяющихся между собой клиньями. Кронштейны удерживают щиты в необходимом проектном положении, обеспечивая необходимые геометрические размеры колонн. Опалубка перекрытий может быть решена в двух вариантах: 1 опалубка, включающая палубу из листов ламинированной фанеры, закрепленных на продольных и поперечных несущих балках, смонтированных на рамах с выдвижными домкратами; 2 столовая сборно-разборная опалубка, состоящая из стола в виде набора рам с опорными домкратами, соединенными между собой продольными связями с катковыми опорами.

В качестве несущих элементов опалубки могут быть использованы телескопические стойки высотой до 3,7 м, которые представляют собой трубчатую конструкцию, состоящую из базовой части с домкратом и выдвижной штанги. Нашли применение телескопические стальные стойки, состоящие из двух труб, входящих одна в другую. Первоначальное положение труб между собой фиксируется благодаря специальным прорезям через каждые 10 см, амплитуда изменений от 10 до см.

Для точной установки стойки по высоте в амплитуде 10 см во внутренней выдвижной трубе имеются сквозные круглые отверстия, в которые вставляют стальной штырь, проходящий в прорезь верхней части наружной трубы.

Штырь опирается на гайку, навинченную на нарезку в верхней части наружной трубы, и поддерживает внутреннюю трубу в заданном положении. Для плавного опускания опор раскружаливания , поддерживающих опалубочные щиты, применяют специальные приспособления. При использовании специальных инвентарных деревометаллических стоек используют винтовой домкрат, а стальных телескопических стоек — гайку на винтовой нарезке наружной трубы.

Металлические стойки с поддомкрачиванием применяют с тремя видами съемных головок. Вильчатая головка предназначена для установки в ней одной-двух главных несущих балок. Падающая головка удобна тем, что при наборе забетонированной конструкцией перекрытия достаточной прочности появляется возможность убрать некоторые промежуточные стойки. При нажатии на специальный рычаг падающая головка опускается в пределах до 10 см, при этом остающаяся система стоек и балок, поддерживающая перекрытие, сохраняет свое положение.

Третий тип головок — опорная, поддерживает опалубочную систему до распалубливания. Эти головки при нажатии на рычаг опускаются на Щиты опалубки отсоединяют от забетонированной конструкции за счет собственной массы или с применением специальных ломиков.

Крупнощитовая опалубка перекрытий состоит из опорных рам, снабженных раздвижными домкратами, на которых через имеющиеся на них опоры смонтированы продольные и поперечные балки, несущие палубу из ламинированной фанеры. Несущие балки соединяются между собой специальным болтовым соединением. Палубу из ламинированной фанеры к балкам крепят посредством шурупов с потайной головкой.

Монтаж и демонтаж опалубки производится в соответствии с технологической картой ТК. Демонтаж опалубки разрешается проводить только после достижения бетоном требуемой прочности. Опалубку устанавливают в соответствии с технологическими картами в последовательности, зависящей от ее конструкции; при этом должна быть обеспечена устойчивость отдельных ее элементов в процессе установки.

Расположение несущих телескопических стоек и рам на бетонируемом перекрытии зависит и от расположения стоек на ранее забетонированном перекрытии. При этом необходимо учитывать темпы возведения конструкций, скорости набора прочности бетоном перекрытий и стен, действующих на конструкции нагрузок на различных этапах возведения сооружения и других технологических факторов.

Место установки опалубочных форм и лесов должно быть очищено от мусора, снега и наледи. Поверхность земли следует планировать путем срезки верхнего слоя грунта. Подсыпать для этих целей грунт не разрешается. При установке опалубки особое внимание обращают на вертикальность и горизонтальность элементов, жесткость и неизменяемость всех конструкций в целом, и правильность соединений элементов опалубки в соответствии с рабочими чертежами.

Допускаемые отклонения при установке опалубки и поддерживающих лесов нормируются. Применение инвентарной опалубки предусматривает обязательную смазку палубы щитов. Наиболее распространены гидрофобизирующие смазки на основе минеральных масел или солей жирных кислот, а также комбинированные смазки. Смазки уменьшают сцепление палубы с бетоном, облегчая, таким образом, распалубку и, как следствие, повышая долговечность опалубочных щитов. Смазку восстанавливают через Армирование конструкций.

Назначение и виды арматуры. Арматура — стальные стержни, прокатные профили и проволока, расположенные в бетоне для совместной с ним работы. Сборно-монолитные и монолитные ненапрягаемые конструкции армируют укрупненными монтажными элементами в виде сварных сеток, плоских и пространственных каркасов, которые изготовляют вне возводимого сооружения и затем устанавливают монтажными кранами. Иногда сложные конструкции армируют непосредственно в проектном положении из отдельных стержней с соединением их в законченный арматурный каркас сваркой или вязкой.

Арматуру подразделяют по назначению в конструкции на рабочую, распределительную и монтажную. Рабочая арматура воспринимает растягивающие усилия, возникающие в железобетонных конструкциях от собственной массы и внешних нагрузок. Распределительная арматура служит:. Монтажная арматура обычно не воспринимает усилий, а обеспечивает точное положение в опалубке рабочих стержней и плоских арматурных сеток и элементов.

Основной в современном строительстве является арматура периодического профиля, имеющая надежную анкеровку и повышенное сцепление с бетоном. При использовании стержней из гладкой арматуры для их лучшего закрепления в бетоне концы стержней, работающих на растяжение, делают загнутыми в виде крюков. В гражданском строительстве обычно применяют арматурные стержни диаметром В качестве арматуры иногда применяет профильный прокат. К арматурным изделиям относят отдельные стержни стержневая арматура , арматурные сетки, плоские и пространственные арматурные каркасы, арматурные изделия для предварительно напряженных конструкций, закладные детали, монтажные петли и хомуты.

Стержневую арматуру изготовляют гладкого профиля из-за малой эффективности выпуск ее сокращается и периодического с расположением выступов по винтовой линии или елочкой. Сварные арматурные сетки состоят из взаимно перекрещивающихся стержней, соединенных в местах пересечения сваркой. Их выпускают с продольной, поперечной и взаимно-перпендикулярной рабочей арматурой. В общем виде, сетки объединяют рабочую и распределительную арматуру и состоят из отдельных проволок диаметром от 3 до 9 мм включительно и стержней из арматурной стали диаметром 10 мм, расположенных в двух взаимно перпендикулярных направлениях и соединенных в местах пересечения контактной точечной сваркой.

Общая ширина сеток по осям крайних стержней установлена от до мм сетка должна при транспортировании укладываться между продольными бортами грузового автомобиля. Плоские рабочие сетки выпускают шириной до 2,5 м, длиной до 9,0 м, иногда, в соответствии с заказом до 12,0 м. Продольные рабочие стержни имеют диаметр При необходимости сетки на заводах могут быть подвергнуты дополнительной обработке — вырезке отверстий, приварке дополнительных стержней и гнутью.

Сетки в виде рулонов имеют широкую номенклатуру по применяемой стали, диаметрам стержней, величине ячеек и ширине сеток. Длина сеток не оговаривается, но масса отдельного рулона не должна превышать кг. Плоские стальные каркасы обычно состоят из продольной арматуры, образующей один или два пояса и соединяющей их решетки в виде отдельных поперечных или непрерывных в виде змейки стержней.

Большое количество поперечных стержней в каркасах, соединенных с рабочими стержнями точечной сваркой, создает надежное заанкеривание в бетоне продольных стержней по всей их длине и позволяет отказаться от загибания крюков даже при гладкой арматуре. Рабочая арматура унифицированных каркасов принимается диаметром от 10 до 30 мм, а распределительная — только диаметром от 10 мм при сварке возможен пережог стержней меньшего диаметра. Применяют каркасы для армирования линейных конструкций — балок, прогонов, ригелей, пустотных настилов перекрытий.

Пространственные арматурные каркасы состоят из двух или четырех плоских каркасов, соединенных между собой отдельными стержнями или хомутами. Такие каркасы применяют для армирования колонн, балок, ригелей и фундаментов. Для армирования предварительно-напряженных конструкций чаще всего применяют проволочную арматуру.

Проволочную арматуру подразделяют на несколько типов:. В последние годы начинают широко применять и неметаллическую арматуру в виде стекловолокна и асбеста. Стекловолокно в смеси с цементным раствором образует стеклоцемент, обладающий высокой прочностью, но невысокими водо- и газопроницаемостью. Прочность цементного камня возрастает при использовании рубленого стекловолокна с хаотическим распределением его в конструкции.

Также высокими прочностными характеристиками будет обладать монолитная конструкция при хаотическом распределении в нем обрезков арматурных стержней и проволоки. С использованием асбестовых волокон производят асбестоцемент, изделия из которого обладают высокой прочностью и непроницаемостью. Арматурные работы включают в себя следующие процессы:. Все процессы армирования железобетонных конструкций можно объединить в две группы: предварительное изготовление арматурных элементов и установка их в проектное положение.

Изготовление арматурных изделий. Арматурные изделия изготовляют централизованно на арматурно-сварочных заводах, в арматурных цехах и мастерских. Проволока диаметром до 10 мм и сталь периодического профиля диаметром до 9 мм поступают в арматурную мастерскую в бухтах, а сталь больших диаметров — прутьями длиной от 4 до 12 м, объединенными в пакеты до 10 т. Готовые сетки для заготовки каркасов поступают плоскими или в рулонах.

Складируют сталь на стеллажах раздельно по маркам, диаметрам и длине стержней. Хранение производят в закрытом помещении или под навесом, запрещено класть арматуру на земляной пол. Процесс изготовления ненапрягаемой арматуры состоит из отдельных технологических операций, которые объединены в следующие технологические группы:.

Заготовительные операции ведут двумя потоками — для катанки и стержневой арматуры. Сталь, поступающую в бухтах катанка с бухтодержателей направляют на станки-автоматы, одновременно производящие очистку поверхности стержня от ржавчины, правку искривлений проволоки и ее резку. Концы заканчивающейся и новой бухты соединяют в непрерывную плеть машиной для стыковой сварки. По ходу движения катанки установлены станки для точной резки и гнутья.

Стержни, поступающие на технологическую цепочку, правят, очищают от ржавчины, сваривают стыковой сваркой в непрерывную плеть во избежание отходов, затем их режут на обрезки с заданными размерами и, при необходимости, передают на станок для гнутья. Соединение арматурных элементов. Способы сварки. Установку арматуры и арматурных изделий осуществляют машинами и механизмами, используемыми на строительной площадке. В отдельных случаях и в неудобных для применения механизмов местах производят ручную укладку арматуры и ее вязку.

Основные способы соединения арматурных стержней между собой — укладка внахлестку или сварка. Соединение нахлесткой без сварки используют при армировании конструкций сварными сетками или плоскими каркасами с односторонним расположением рабочих стержней арматуры и при диаметре арматуры не выше 32 мм. При этом способе стыкования арматуры величина перепуска нахлестки зависит от характера работы элемента, расположения стыка в сечении элемента, класса прочности бетона и класса арматурной стали.

При стыковании на сварке сеток из круглых гладких стержней в пределах стыка следует располагать не менее двух поперечных стержней. При стыковании сеток из стержней периодического профиля приваривать поперечные стержни в пределах стыка не обязательно, но длина нахлестки в этом случае должна быть увеличена не менее чем на пять диаметров свариваемой арматуры. Стыки стержней в нерабочем направлении поперечные монтажные стержни выполняют с перепуском в 50 мм при диаметре распределительных стержней до 4 мм и мм — при диаметре более 4 мм.

При диаметре рабочей арматуры 26 мм и более сварные сетки в нерабочем направлении рекомендуется укладывать впритык друг к другу с перекрытием стыка специальными стыковыми сетками с перепуском в каждую сторону не менее 15 диаметров распределительной арматуры, но не менее мм. Электрическую энергию можно преобразовать в тепловую двумя способами:. Контактная сварка имеет следующие основные разновидности:. Точечная контактная сварка. Сущность этой сварки в том, что два стержня в месте их пересечения зажимают между электродами сварочной машины.

При пропускании тока под действием выделяемой теплоты металл стержней в свариваемом месте накаляется докрасна, размягчается и, под действием сдавливаемого усилия стержни прочно соединяются между собой. При автоматической сварке подача свариваемых деталей, их закрепление, процесс сварки и выдача готовых изделий происходит без участия человека. При полуавтоматической сварке детали подают вручную, а готовое изделие после сварки перемещается автоматически.

Достоинства точечной контактной сварки — высокая производительность, небольшой расход энергии при использовании токов большой силы в течение малого отрезка времени, возможность механизации и автоматизации процесса, отсутствие расхода металла на электроды.

Сборку, а затем и сварку стыкуемых элементов осуществляют с применением кондукторов, которые обеспечивают точность геометрических размеров и взаимное расположение стыкуемых стержней. Контактная стыковая сварка производится в основном методом непрерывного оплавления:. Сварка методом непрерывного оплавления отличается тем, что два свариваемых стержня, подключенные к электрической цепи, начинают медленно сближаться до соприкосновения и одновременного замыкания цепи тока.

Начавшееся при включении цепи оплавление металла увеличивается при сближении стержней и завершается сильным сжатием оплавившихся концов. Когда сжатие осадка достигает необходимой величины, ток отключают, и сваренные стержни вынимают из зажимов машины. Получаемое качество сварки таково, что сварной шов может быть расположен в любом месте арматурного каркаса или несущей конструкции. Достоинства стыковой контактной сварки — высокое качество стыков соединяемых элементов, минимальные затраты электродов и других вспомогательных материалов, возможность механизации и автоматизации процесса сварки, высокая производительность труда.

Дуговую сварку, т. Дуговая электросварка может выполняться как при помощи переменного, так и постоянного тока. Сварка на переменном токе более распространена, так как оказывается более экономичной. Для получения электрического тока нужных характеристик вместо сложных и громоздких генераторов постоянного тока применяют легкие, мобильные и более дешевые трансформаторы переменного тока.

Нужная тепловая мощность, исчисляемая тысячами калорий, легко регулируется изменением силы тока. Минимальное напряжение, необходимое для возбуждения дуги, составляет при постоянном токе Электроды, которые применяют для сварочных работ, имеют специальное покрытие, которое при сварке испаряется, образующиеся пары легко ионизируются и таким образом повышают устойчивость дуги. При плавлении металл электрода стекает и, охлаждаясь, образует на свариваемой поверхности шов, от прочности которого зависит и прочность сварного соединения в целом.

Длина дуги оказывает свое воздействие на качество шва. Чем дуга длиннее, тем большее расстояние проходит расплавленный металл от электрода в шов и, поглощая из воздуха кислород и азот, ухудшает свои механические свойства. Достоинства дуговой сварки — универсальность, возможность применения в любой точке сложного арматурного каркаса и достижения требуемой прочности сварного шва.

Недостатки дуговой сварки — дополнительный расход металла на электроды, низкая производительность труда, более высокая квалификация сварщиков. Обычно сваривают стержни диаметром 10 мм и более, так как при меньших диаметрах стержней возможен их пережог. Из существующих способов дуговой сварки наиболее часто встречаются следующие — внахлестку, с накладками и ванная. Сущность ванного способа сварки заключается в том, что электрическую дугу возбуждают между торцами свариваемых стержней при помощи электродов.

Выделяемой теплотой расплавляют металл с торцов стержней и с электрода, в результате создается ванна расплавленного металла. Зазор между стержнями принимается равным 1, Для образования ванны используют инвентарные медные формы и стальные скобы-подкладки. Способ имеет ряд преимуществ по сравнению с другими видами дуговой сварки — уменьшается расход металла на стык, снижается расход электродов и электроэнергии, а также трудоемкость и себестоимость.

Ванная сварка применима для стержней диаметром от 20 до 80 мм. Производство арматурных работ на объекте. Армирование железобетонных конструкций желательно осуществлять сварными арматурными каркасами и сетками заводского изготовления. На строительном объекте при возведении монолитных железобетонных конструкций выполняют следующие операции:. Если по условиям транспортирования крупноразмерные каркасы или сетки заготовляют или перевозят частями, то их укрупняют на строительстве до проектных размеров дуговой или ванной сваркой.

Укрупнительную сборку производят непосредственно в проектном положении в опалубке или в стороне от места установки на заранее оборудованной площадке. Укрупнительная сборка арматурных каркасов перед их подъемом и установкой дает возможность лучше использовать грузоподъемность крана и значительную часть работы выполнять арматурщикам в более удобных и безопасных условиях.

Монтаж арматурных конструкций следует производить преимущественно из крупноразмерных блоков и унифицированных сеток заводского изготовления с обеспечением фиксации защитного слоя. Смонтированная арматура должна быть надежно закреплена от смещений и предохранена от деформаций и смещений в процессе производства работ по бетонированию конструкций. Крестовые пересечения стержней арматуры, уложенных поштучно, в местах их пересечений необходимо скреплять вязальной проволокой или при помощи специальных проволочных соединительных скрепок.

Арматуру можно устанавливать в опалубку только после проверки соответствия опалубки проектным размерам с учетом допусков, установленных СНиПом. При монтаже арматуры в опалубку и последующем бетонировании любой конструкции необходимо соблюдать указанную в проекте заданную толщину защитного слоя бетона , т.

Правильно обеспеченный и выполненный защитный слой бетона надежно предохраняет арматуру от коррозирующего воздействия внешней среды. Толщину защитного слоя бетона обеспечивают различными способами. К пространственным и плоским арматурным каркасам целесообразно приваривать обрезки стержней из нержавеющей стали, упирающиеся в стенки и днище короба опалубки или удлиненные стержни. Такое решение применяют в том случае, когда конструкция будет работать только в сухих условиях эксплуатации.

При армировании плит перекрытия двумя сетками, по высоте проектное положение фиксируют подставками из круглой арматурной стали. Применяют заранее заготовленные бетонные подкладки и прокладки, которые целесообразно армировать обрезками вязальной проволоки во избежание раскалывания, концами проволоки привязывают прокладку к вышерасположенному арматурному стержню.

Более новыми типами фиксаторов являются фигурные пластмассовые и прорезные капроновые кольца. Эти фиксаторы характеризуются высокими технологическими свойствами. Во время установки на арматуру такое фигурное кольцо за счет присущей ему упругости немного раздвигается и плотно охватывает стержень. Монтаж арматурных конструкций обычно производят с транспортных средств при помощи крана, используемого на подаче опалубки и бетонной смеси.

Арматурные каркасы массой до кг можно устанавливать вручную, подавая их краном в зону работ сразу несколько штук. Изделия большей массы устанавливают непосредственно краном. Как и для сборных железобетонных элементов желательно поднимать и монтировать арматурные каркасы в том положении, в котором они будут работать в забетонированной конструкции. При небольшой высоте колонн, а также при легких каркасах арматурный каркас колонн устанавливают путем его опускания при помощи крана в готовую опалубку сверху.

Установленный арматурный каркас, через нижнее окно короба опалубки колонны приваривают или привязывают к выпускам арматуры, забетонированным в фундаменте, плите или колонне нижележащего этажа. Тяжелые каркасы колонн устанавливают раньше опалубки и соединяют с выпусками арматуры нижнего этажа на сварке. Часто, особенно при большой высоте колонн, арматурный каркас заводят в опалубку, у которой уже собраны две или три стенки.

Производят выверку каркаса, соединение с арматурными выпусками, после чего завершают сборку опалубочного блока колонны. Установку арматурных каркасов прогонов и балок производят в готовые короба опалубки. Сварные сетки и плоские каркасы с односторонним расположением рабочих стержней стыкуют на месте установки без сварки с напуском верхнего каркаса не менее, чем на мм.

Армирование плит перекрытия производят путем укладки в пространственные конструкции готовых сварных сеток, стыкование которых осуществляют внахлестку электродуговой сваркой. Армирование стен осуществляют готовыми сетками и реже вязкой из отдельных стержней в опалубке, установленной с одной стороны. При возведении монолитных железобетонных конструкций на большой высоте применяют арматурно-опалубочные блоки, представляющие собой короба балок, прогонов с уложенными в них арматурными каркасами.

Установку любой арматуры следует вести так, чтобы не повредить ранее установленную и выверенную опалубку, а также не деформировать арматурные каркасы. В процессе производства работ допускаются в отдельных случаях бессварочные соединения стержней: стыковые, при соединении внахлестку или обжимными гильзами и винтовыми муфтами с обеспечением равноправного стыка и крестообразные, выполняемые вязкой отожженной проволокой. Приемка смонтированной арматуры, всех стыковых соединений должна проводиться до укладки бетонной смеси и оформляться актом на скрытые работы, в котором обязательно оценивают качество выполненных работ.

Приемку установленной в проектное положение арматуры производят по захваткам, подготовленным для бетонирования. Кроме проверки проектных размеров смонтированной арматуры по чертежам, проверяют наличие и места расположения фиксаторов, прочность и целостность сборки армоконструкции, которая должна обеспечивать неизменность формы при бетонировании.

Кроме этого отмечают все отступления от проекта, сверяют с проектом количество и диаметр стержней, а также правильность их расположения и качество электросварки в пересечениях стержней. В конструкциях, работающих на изгиб плитах, балках, прогонах, ригелях , под действием нагрузки появляются растягивающие напряжения. Для их восприятия в растягивающей зоне приходится размещать большое количество арматуры. Кроме этого, невозможно использовать прочностные стали на растяжение, так как в бетоне появляются трещины в зоне растяжения, хотя напряжение в арматуре еще не превышает предела текучести, а эксплуатировать такую железобетонную конструкцию с трещинами по нормам не допускается.

Эти недостатки в значительной степени устраняются в предварительно напряженных железобетонных конструкциях. В таких конструкциях, еще до установки ее в сооружение и передачи на нее эксплуатационных нагрузок, предполагаемая растянутая зона уже подвержена сжатию. И прежде чем бетон в конструкции, воспринимая эксплуатационную нагрузку, начнет работать на растяжение, в нем необходимо сначала погасить предварительно созданное сжатие.

Предварительное напряжение позволяет увеличивать нагрузку на конструкцию или при прежней величине нагрузки уменьшать габариты конструкции. Достоинства предварительно-напряженных железобетонных конструкций:. Это важно для сооружений, находящихся под постоянным давлением воды, других жидкостей и газов трубы, плотины, резервуары. Предварительное напряженное армирование осуществляют в основном двумя способами:.

Первый способ заводской и называется натяжением на упоры, второй применяют в построечных условиях на площадках укрупнительной сборки и называют натяжением на бетон. Натяжение на формы и упоры. При армировании по этому способу арматурные стержни натягивают перед укладкой бетонной смеси.

Усилия натяжения, достигающие по величине нескольких десятков и сотен тонн, воспринимаются конструкцией стальной формы, в которой изготавливают формуют изделие, или специальными упорами стенда. Бетонируют изделие при натянутой арматуре.

Когда после затвердения бетона и набора им необходимой прочности натяжные приспособления снимают, сжатие бетона достигается за счет сцепления между стремящимися сжаться арматурными стержнями или прядями и окружающим их затвердевшим бетоном. При этом способе натяжение арматуры контролируют до обжатия бетона. При натяжении на формы упоры отсутствуют и усилия воспринимает сама форма, которая является силовой. В таких формах бетонируют плиты и панели перекрытий и покрытий.

Достоинство форм в том, что они имеют модульные размеры, поэтому при смене бетонируемой конструкции ее легко переналадить на изготовление новых изделий. Натяжение арматуры на бетон. Предварительное напряжение в монолитных и сборно-монолитных конструкциях можно создавать по методу натяжения арматуры на затвердевший бетон.

При таком методе усилие натяжения воспринимается не формой и не упорами, а уже затвердевшим и набравшим необходимую прочность бетоном. Этот способ используется главным образом для армирования конструкций, собираемых из отдельных блоков. По способу имеются две разновидности — линейная и непрерывная.

При линейном способе укладки напрягаемой арматуры в конструкциях при их бетонировании оставляют открытые или закрытые каналы. При приобретении бетоном заданной прочности в каналы укладывают арматуру и производят ее натяжение с передачей усилий на напрягаемую конструкцию. Линейный способ применяют для создания напряжения в балках, колоннах, рамах, трубах, силосах и многих других линейных конструкциях. Непрерывный способ заключается в навивке с заданным натяжением бесконечной арматурной проволоки по контуру забетонированной конструкции.

В отечественном строительстве способ применяют для предварительного напряжения стенок цилиндрических резервуаров, предварительно напряженных труб. При линейном армировании напрягаемые элементы применяют в виде отдельных стержней, прядей, канатов и проволочных пучков. Линейное армирование включает в себя: заготовку напрягаемых арматурных элементов; образование каналов для укладки напрягаемых арматурных элементов; установку арматурных элементов с анкерными устройствами в каналы; напряжение арматуры с последующим инъецированием закрытых каналов или бетонированием открытых каналов.

Проволочные пучки изготовляют из высокопрочной проволоки. Проволоку в пучке располагают или с заполнением ею всего сечения, или по окружности арматурного стержня. В первом случае пучок оборудуют гильзовым, а во втором — гильзостержневым анкером.

Способ натяжения на бетон позволяет собирать крупноразмерные конструкции длиной до 30 м и более у места их установки из отдельных, легко перевозимых частей меньшего размера. При армировании конструкций, собираемых из отдельных блоков, в сборных железобетонных элементах при заводском изготовлении заранее оставляют каналы или борозды для размещения в них напрягаемой арматуры.

Напрягаемую арматуру укладывают протягивают в эти заранее оставленные каналы, диаметр которых обычно делают на В качестве каналообразователей используют резиновые шланги, стальные или гофрированные трубы, которые перед укладкой смазывают жидким мылом. В резиновый шланг вводят смазанный машинным маслом сердечник, изготовленный из стального стержня. Через Стальные трубы через каждые В подготовленные таким образом каналы протягивают вручную или при помощи лебедки пучки или стержни арматуры.

Первоначально через канал проталкивают выпрямленную проволоку, к концу которой приварен или прикреплен направляющий колпачок или наконечник. Он необходим для преодоления возможных неровностей на стенках канала. К наконечнику может быть присоединен трос или арматурный напрягаемый стержень. Трос крепят к барабану переносной лебедки и с его помощью протаскивают арматурный канат или прядь. Если необходимо протащить пучок арматурных проволок, то их можно заклинить в колпачке или приварить к специальному наконечнику.

Если длина канала не превышает При напряженном армировании крупноразмерных конструкций каналы устраивают путем закладки стальных тонкостенных гофрированных трубок, которые извлекаться не будут. В конструкциях из нескольких блоков арматуру затягивают в канал только после того, как блоки будут составлены в проектное положение и выверены.

Затем швы между блоками заделывают раствором на быстротвердеющем цементе. Арматуру начинают протаскивать в каналы и натягивать только после достижения раствором в швах прочности, обусловленной проектом. Затем производят натяжение арматуры домкратами, снабженными захватами со сменными гайками, позволяющими натягивать арматуру с различными диаметрами анкерующих устройств. После присоединения арматуры к захвату и проверки всех систем приступают к натяжению арматуры. Натяжение необходимо производить плавно, ступенями по Применяют различные способы натяжения арматуры:.

В конструкциях с длиной прямолинейного канала не более 18 м арматуру ввиду небольших сил трения натягивают с одной стороны. При длине прямолинейных каналов свыше 18 м и при криволинейных каналах арматуру натягивают с двух сторон конструкции. Затем с другой стороны конструкции, другим домкратом арматуру натягивают до усилия, равного 1,1 от требуемого значение 1,1 — коэффициент технологической перетяжки арматуры.

Для предохранения пучков или стержней от коррозии немедленно после натяжения производят промывку каналов и их инъецирование под давлением цементным тестом или раствором маркой не ниже и только на портландцементе. Контроль величины натяжения напрягаемой арматуры при механическом натяжении производят по показаниям манометров насосных станций, а также по величине упругого удлинения.

Заключительная операция — инъецирование каналов, к ней приступают сразу после натяжения арматуры. Для этого применяют раствор не ниже М на цементе М Нагнетают раствор при помощи растворонасоса или пневмонагнетателя с одной стороны канала. Раствор подают по шлангу и через специально оставленные отверстия заполняют канал. Инъецирование ведут непрерывно с начальным давлением от 0,1 МПа и последующим его повышением до 0,4 МПа.

Прекращают нагнетание, когда раствор начнет вытекать с другой стороны канала. Натяжение арматуры контролируют в процессе обжатия бетона, которое можно производить только после накопления затвердевшим бетоном прочности, достаточной для восприятия усилий, создаваемых натяжными устройствами. Для закрепления напрягаемой арматуры на упорах, в формах, или при натяжении на бетон используют гильзы, опорные шайбы с гайками, приваренные петли, клиновые зажимы, конические анкеры и другие приспособления.

Применение проволочных пучков и пакетов позволяет заменить трудоемкое натяжение отдельных проволок натяжением целого пучка, сгруппированного вокруг специального круглого анкера или пакета. При такой группировке проволок уменьшается сечение арматуры, снижается объем и масса конструкции.

Для предварительно напряженных конструкций очень важно создать надежное сцепление поверхности арматуры с окружающим бетоном. Этим объясняется применение в качестве напрягаемой арматуры прядей и канатов со сложной формой поверхности.

ПАХРА МОНОЛИТ БЕТОН

Вы сможете придти к нам с.

Мне тоже кладка керамзитобетон цена Вами

В процессе перемешивания бетонной смеси гель обволакивает отдельные зерна заполнителей, постепенно твердеет, а кристаллы с течением времени соединяются в кристаллические сростки. Твердеющий гель превращается в цементный камень, скрепляющий зерна крупных и мелких заполнителей в монолитный твердый бетон. Избыточная, химически несвязанная вода частью вступает впоследствии в химическое соединение с менее активными частицами цемента, а частью заполняет многочисленные поры и капилляры в цементном камне и полостях между зернами крупного заполнителя, а затем, постепенно испаряясь, освобождает их.

По данным исследований поры занимают около трети объема цементного камня; с уменьшением водоцементного отношения пористость цементного камня уменьшается и прочность бетона увеличивается. Таким образом, структура бетона оказывается весьма неоднородной: она образуется в виде пространстненной решетки из цементного камня, заполненной зернами песка и щебнем различной крупности и формы, пронизанной большим числом микропор и капилляров, которые содержат химически несвязанную воду, водяные пары и воздух.

Физически бетон представляет собой капиллярно-пористый материал, в котором нарушена сплошность массы и присутствуют все три фазы - твердая, жидкая и газообразная. Цементный камень также обладает неоднородной структурой и состоит из упругого кристаллического сростка и наполняющей его вязкой массы - геля. Длительные процессы, происходящие в бетоне, - изменение водного баланса, уменьшение объема твердеющего геля, рост упругих кристаллических сростков - наделяют бетон упругопластическими свойствами.

Эти свойства проявляются в характере деформирования бетона под нагрузкой, во взаимодействии с температурновлажностным режимом окружающей среды. Исследования показали, что имеющиеся известные теории прочности к бетону неприменимы. Зависимость между составом, структурой бетона, его прочностью и деформативностыо представляет собой задачу, которую исследователи решают применительно к каждому виду бетона в зависимости от его признаков см. Суждения о прочности и деформативности бетона основаны на большом числе экспериментов, выполненных в лабораторных условиях.

Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде усадка бетона и увеличиваться в объеме при твердении в воде набухание бетона. Как показывают опыты, усадка бетона зависит от ряда причин:. Чем выше способность заполнителей сопротивляться деформированию, т.

При разной крупности зерен заполнителей и меньшем объеме пустот меньше и усадка;. Обычно усадка бетона происходит наиболее интенсивно в начальный период твердения и в течение первого года, в дальнейшем она постепенно затухает. Чем меньше влажность окружающей среды, тем больше усадочные деформации и выше скорость их роста. Усадка бетона под нагрузкой при длительном сжатии ускоряется, а при длительном растяжении, наоборот, замедляется.

Усадка бетона связана с физико-химическими процессами твердения и уменьшением объема цементного геля, потерей избыточной воды в результате испарения во внешнюю среду и гидратации с еще непрореагированными частицами цемента. По мере твердения цементного геля, уменьшения его объема и образования кристаллических сростков усадка бетона затухает. Капиллярные явления в цементном камне, вызванные избыточной водой, также влияют на усадку бетона - поверхностные натяжения менисков вызывают давление на стенки капилляров, из-за чего происходят объемные деформации.

Усадке бетона в период твердения препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения. По мере твердения геля образующиеся в нем кристаллические сростки становятся такого же рода связями. Неравномерное высыхание бетона приводит к неравномерной его усадке, что, в свою очередь, ведет к возникновению начальных усадочных напряжений.

Открытые, быстрее высыхающие поверхностные слои бетона, испытывают растяжение, в то время как внутренние, более влажные зоны, препятствующие усадке поверхностных слоев, оказываются сжатыми. В бетоне появляются усадочные трещины.

Начальные напряжения, возникающие под влиянием усадки бетона, не фигурируют непосредственно в расчете прочности железобетонных конструкций; их учитывают расчетными коэффициентами, охватывающими совокупность характеристик прочности. Уменьшить начальные усадочные напряжения в бетоне можно конструктивными мерами - армированием элементов и устройством усадочных швов в конструкциях, а также технологическими мерами - подбором состава, увлажнением среды при тепловой обработке твердеющего бетона, увлажнением поверхности бетона.

Так как бетон представляет собой неоднородный материал, внешняя нагрузка создает в нем сложное напряженное состояние. В бетонном образце, подвергнутом сжатию, напряжения концентрируются на более жестких частицах, обладающих большим модулем упругости, вследствие чего по плоскостям соединения этих частиц возникают усилия, стремящиеся нарушить их связь. В то же время происходит концентрация напряжений в местах, ослабленных порами и пустотами. Из теории упругости известно, что вокруг отверстий в материале, подвергнутом сжатию, наблюдается концентрация самоуравновешенных растягивающих и сжимающих напряжений, действующих по площадкам, параллельным сжимающей силе.

Поскольку в бетоне много пор и пустот, растягивающие напряжения у одного отверстия или поры накладываются на соседние. В результате в бетонном образце, подвергнутом осевому сжатию, кроме продольных сжимающих напряжений возникают и поперечные растягивающие напряжения вторичное поле напряжений. Структура бетона, обусловленная неоднородностью состава и различием способов приготовления, приводит к тому, что при испытании образцов, изготовленных из одной и той же бетонной смеси, получают неодинаковые показатели прочности.

Прочность бетона зависит от ряда факторов, основными из которых являются:. В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются:. Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов.

Классом бетона по прочности на осевое сжатие В МПа называется временное сопротивление сжатию бетонных кубов с размером ребра мм, испытанных в соответствии со стандартом через 28 сут. Бетону свойственно нелинейное деформирование. Начиная с малых напряжений, в нем, помимо упругих деформаций, развиваются неупругие остаточные или пластические деформации.

Поэтому силовые деформации в зависимости от характера приложения нагрузки и длительности ее действия подразделяют на три вида: при однократном загружении кратковременной нагрузкой; длительном действии нагрузки; многократно повторяющемся действии нагрузки. Свойства бетона, характеризующиеся нарастанием неупругих деформаций с течением времени при постоянных напряжениях, называют ползучестью бетона.

Свойство бетона, характеризующееся уменьшением с течением времени напряжений при постоянной начальной деформации называют релаксацией напряжений. Ползучесть и релаксация имеют общую природу и оказывают существенное влияние на работу железобетонных конструкций под нагрузкой. Природа ползучести бетона объясняется его структурой, длительным процессом кристаллизации и уменьшением количества геля при твердении цементного камня.

Под нагрузкой происходит перераспределение напряжений с испытывающей вязкое течение гелевой структурной составляющей на кристаллический сросток и зерна заполнителей. Одновременно развитию деформаций ползучести способствуют капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой. С течением времени процесс перераспределения напряжений затухает и деформирование прекращается. Ползучесть разделяют на линейную, при которой зависимость между напряжениями и деформациями приблизительно линейная, и нелинейную, которая начинается прн напряжениях, превышающих границу образования структурных микротрещин.

Плотный силикатный бетон. Это бесцементный бетон автоклавного твердения, получаемый на основе известкового вяжущего известково-песчаного, известковошлакового и т. Он относится к группе тяжелых бетонов, где заполнителями служат кварцевые пески; обладает хорошим сцеплением с арматурой и защищает ее от коррозии. В производстве силикатобетонных автоклавных изделий применяют известь в виде молотой кипелки, пушонки, а также частично загашенного материала.

По другим показателям известь должна удовлетворять требованиям технических условий. Недожог извести влечет повышенный ее расход, однако частичное присутствие известняка не только не ухудшает качества изделий, но далее повышает их прочность. Пережог замедляет скорость гидратации извести и вызывает появление в изделиях трещин, вспучиваний и других дефектов, поэтому для производства автоклавных силикатных изделий его содержание недопустимо.

Кварцевый песок в производстве силикатных изделий применяют немолотый, в виде смеси немолотого и тонкомолотого, а также грубомоло-тый. Зерновой состав, форма и характер поверхности зерен также оказывают большое влияние на качество изделий: лучшее сцепление обеспечивают зерна с шероховатой поверхностью и предпочтительными являются горные пески.

Прочность изделий зависит от их плотности, т. Максимальная плотность достигается при смешивании зерен песка различных размеров. Вода должна быть чистой, не содержать вредных примесей. Для производства автоклавных изделий используют различные шлаки, золы от сжигания сланцев и углей, горелые породы. При твердении автоклавных изделий ряд шлаков и зол может частично и даже полностью заменить известь шлакопесчаные и золопесчаные автоклавные изделия.

Разнообразные шлаки и золы могут быть заполнителями в автоклавных изделиях, что практикуется обычно в производстве ячеистых материалов газосиликат и др. Для получения газошлакозолобетонных изделий используют шлаки и золы частично в виде вяжущих, частично — в виде заполнителей. Шлаки и золы не должны содержать посторонних примесей мусора, отходов древесины и т. Материалы и изделия на основе магнезиальных вяжущих получают путем формования и последующего высушивания смеси каустического магнезита или доломита и органического заполнителя, затворенного раствором хлористого магния.

В качестве органических заполнителей применяют древесные опилки, получая ксилолит, или древесные шерсть и стружку, получая фибролит. Возможность использования органических заполнителей в смеси с магнезиальными вяжущими определяется полной сохранностью их в результате минерализации оксихлоридом магния, образующимся при твердении вяжущих. Наряду с этим органические заполнители, отличаясь небольшим объемным весом, придают фибролиту и ксилолиту высокие тепло- и звукоизоляционные свойства, а также легкость обработки: материал пилится, режется, имеет хорошую гвоздимость.

Технология фибролитовых плит следующая. Каустический магнезит затворяют раствором хлористого или сернокислого магния и тщательно смешивают с дозированной частью древесной шерсти. Приготовленную фибролитовую массу загружают в металлические или деревянные формы, прессуют под давлением 0,4—0,5 кГ]см2 и направляют в камеры сушки. В зависимости от объемного веса различают фибролит теплоизоляционный, конструктивный и фибролитовую фанеру.

Применяют теплоизоляционный фибролит для утепления стен, полов и перекрытий, конструктивный — для заполнения стен, перегородок и перекрытий каркасных зданий, а фибролитовую фанеру используют в качестве штукатурки. Ксилолит представляет собой затвердевшую смесь древесных опилок и магнезиального вяжущего, затворенного раствором хлористого магния.

В ксилолит можно вводить также добавки асбеста, трепела, кварцевого песка и красители. Ксилолитовую массу получают тщательным перемешиванием сухих каустического магнезита, заполнителей и красителей с последующим затворением раствором хлористого магния. Если ксилолитовая масса предназначается для полов, то смесь должна иметь пластичную консистенцию.

Уложенную на основание ксилолитовую массу выравнивают и уплотняют вибрацией или трамбованием. Состав массы для производства ксилолитовых плиток 1 объемная часть вяжущего и 4 объемных части опилок. Ксилолитовые плитки выпускают квадратной или шестиугольной формы размером 20X20 или 15x15 см и толщиной 12—15 мм.

На основе магнезиальных вяжущих приготавливают также пено-и газомагнезиты — высокоэффективные теплоизоляционные материалы. Их получают путем смешивания каустического магнезита, затворенного раствором хлористого магния, с устойчивой пеной или с газообразователем.

Теплоизоляционный магнезиальный материал получают также из смеси каустического магнезита или каустического доломита и асбеста, затворенных раствором хлористого магния. Из массы на каустическом магнезите вырабатывают теплоизоляционные асбестомагнезиальные материалы, а на каустическом доломите — совелит.

В процессе обжига, доводимого до спекания, главные оксиды образуют силикаты, алюминаты, алюмоферрит кальция в виде минералов кристаллической структуры, а некоторые из них входят в стекловидную фазу. Минеральный состав клинкера.

Основные минералы клинекера: алит, белит, трехкальциевый алюминат и алюмоферрит кальция. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента. Обжиг смеси производится во вращающихся печах, представляющих собой металлические цилиндры, обложенные внутри огнеупорной футеровкой. Печь укладывают на специальные катки с небольшим уклоном к поверхности земли, за счет чего по мере вращения сырьевая смесь продвигается по печи от приподнятого конца к опущенному.

Длина печи достигает м, а иногда доходит до м, диаметр - до 6 м. По мере продвижения смесь подсушивается, скатывается в шарики и под действием высокой температуры Затем гранулы охлаждаются сначала в печи, в зоне охлаждения, впоследствии - в специальных устройствах - холодильниках.

Существует и достаточно прогрессивный способ обжига клинкера. В печи силикатный расплав заменен расплавом на основе хлористого кальция. Существенно снижается температура обжига Этот цемент быстрее твердеет в начальные сроки.

Остывший клинкер подвергают размолу чаще всего в шаровых мельницах, представляющих собой металлические цилиндры диаметром до 3,5 и длиной до Мельницы имеют Размол клинкера и постепенное продвижение размалываемого материала обеспечиваются при вращении за счет наклона мельницы.

По выходе из шаровой мельницы портландцемент подают на склад в силосы, где он остывает и выдерживается некоторое время, достаточное для стабилизации. Гипсовые вяжущие вещества делятся на две группы — низкообжиговые и высокообжиговые.

К низкообжиговым относится строительный и высокопрочный гипс, а к высокообжиговым — ангидритовый цемент и высокообжиговый гипс эстрих-гипс. Производство строительного гипса складывается из дробления, помола и тепловой обработки дегидратации гипсового камня. Ангидритовое вяжущее было предложено П. Железный и медный купорос уплотняют поверхность затвердевшего ангидритового цемента, вследствие чего катализаторы не выделяются и не образуют выцветы на поверхности изделия.

По прочности на сжатие, различают марки 50, , и Применяют ангидритовые цементы для приготовления кладочных и штукатурных растворов, бетонов, производства теплоизоляционных материалов, искусственного мрамора и других декоративных изделий. Разновидностями магнезиальных вяжущих веществ являются каустический магнезит и каустический доломит. Оставшееся твердое вещество — окись магния — измельчают в тонкий порошок и упаковывают в металлические барабаны.

Обожженный магнезит целесообразно размалывать в шаровой мельнице с сепаратором. Каустический магнезит твердеет сравнительно быстро: схватывание его должно наступать не ранее 20 мин, а конец — не позднее 6 ч от момента затворения.

Марки каустического магнезита по СНиП 1-В. При температуре обжига СаСО3 не разлагается и остается в инертном виде как балласт, что делает вяжущую активность каустического доломита ниже, чем каустического магнезита. Магнезиальные вяжущие затворяют не водой, а водными растворами солей сернокислого или хлористого магния. Наиболее распространенным затворителем является раствор хлористого магния MgCb, так как он обеспечивает большую прочность.

Каустический магнезит легко поглощает влагу и углекислоту из воздуха, в результате чего образуются гидрат окиси магния и углекислый магний. Поэтому хранить его надо в плотной герметической таре. На основе магнезиальных вяжущих изготовляют ксилолит смесь вяжущего с опилками , используемый для устройства полов, фибролит и другие теплоизоляционные материалы. Применяют магнезиальные вяжущие и при производстве изделий для внутренней облицовки помещений, изготовления пенобетона, оснований под чистые полы, скульптурных изделий.

Кислотоупорные цементы применяют для футеровки химической аппаратуры, возведения башен, резервуаров и других сооружений химической промышленности. Эти цементы состоят из смеси водного раствора силиката натрия растворимого стекла , кислотоупорного наполнителя и добавки — ускорителя твердения. В качестве микронаполнителя используют кварц, кварциты, андезит, диабаз и другие кислотоупорные материалы, ускорителя твердения — кремнефтористый натрий.

Варка продолжается 7—10 ч, и полученная стекломасса поступает из печи в вагонетки, где быстро охлаждается и распадается на куски. Застывшие куски называют «силикат-глыба». В зависимости от последующей обработки обожженного продукта различают следующие виды воздушной извести:. На свойства извести большое влияние оказывает содержание в известняках примесей глины, углекислого магния, кварца и др.

Известь, свободная от примесей, быстро гасится, выделяя при этом много тепла, и дает высокопластичное тесто. По скорости гашения известь бывает быстрогасящейся со скоростью гашения до 20 мин и медленногасящейся со скоростью гашения свыше 20 мин. Портландцемент является основным материалом в современном промышленном, гражданском, жилищном, сельскохозяйственном, гидротехническом и дорожном строительстве.

Портландцементом называется гидравлическое йяжуЩёе вещество, твердеющее в воде и на воздухе, получаемое тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм называется клинкером;. Портландцемент можно выпускать без добавок или с.

К природным активным минеральным добавкам относят некоторые осадочные горные породы диатомит, трепел, опоку, глиежи — естественно обожженные глинистые породы , а также породы вулканического происхождения вулканический пепел, туф, пемзу, трасс. В составе минеральных добавок в значительном количестве содержатся химически активные составляющие: аморфный водный диоксид кремния диатомиты, трепелы и другие осадочные породы ; аморфный диоксид кремния и алюмосиликаты вулканические и искусственные добавки ; метакаолинит и активный глинозем в добавках, содержащих обожженное глинистое вещество — глиниты, глиежи, зола-унос и топливные шлаки.

Если такие добавки тонко измельчить, то в присутствии влаги, даже при обычной температуре, они способны взаимодействовать с гидроксидом кальция, находящимся в извести или выделившимся при твердении портландцемента, образуя практически нерастворимые продукты реакции.

В результате воздушная известь приобретает гидравлические свойства, а портландцемент — специальные свойства и более низкую себестоимость. В зависимости от вида активной минеральной добавки и ее количества портландцемента с минеральными добавками разделены на три вида: портландцемент с минеральными добавками ПЦД , пуццолановый портландцемент ППЦ и шлакопортландцемент ШПЦ. Портландцемент с минеральными добавками ПЦД получают измельчением клинкера, минеральных добавок и гипса.

При этом практически сохраняются все свойства портландцемента, кроме морозостойкости она несколько ниже , а некоторые свойства улучшаются больше водостойкость, меньше тепловыделение, более высокая сопротивляемость коррозии первого вида. При его получении экономится портландцементный клинкер, что способствует снижению себестоимости цемента.

Марки такого цемента те же, что и у портландцемента: , , и ПЦД успешно применяют в строительстве вместо портландцемента, за исключением случаев, когда требуется высокая морозостойкость. Для получения указанных цементов используют клинкер, состав которого аналогичен клинкеру соответственно быстротвердеющего и сульфатостойкого портландцемента см. Такие цементы выпускают М и и применяют практически наравне с быстротвердеющим и сульфатостойким портландцементом.

Содержание активных минеральных добавок устанавливают с учетом активности минеральной добавки и минерального состава клинкера. Доменные шлаки представляют собой продукт сплавления веществ, находящихся в пустой породе руды и топлива в основном в виде глины с флюсами плавнями , которыми обычно являются известняк и доломит. При выплавке 1 т чугуна в среднем получается 0, При высокой температуре в доменной печи диоксид кремния и оксид алюминия глинистых минералов взаимодействуют с оксидом кальция.

При этом образуются малоосновные силикаты и алюминаты кальция. Структура и состав соединений в шлаках зависят не только от его химического состава, но и от условий охлаждения.

И реферат бетон бетонные смеси керамзитобетон барнаул

Бетон и бетонные смеси. Учимся выбирать и делать самостоятельно // FORUMHOUSE

Для обеспечения уплотнения укладываемого слоя, остатки зданий стена из монолитного керамзитобетона полами из 7 дней. Кроме того, в зависимости от назначения железобетонной конструкции и условий ее эксплуатации, могут быть предъявлены еще и специальные требования: морозостойкость при многократном замораживании и оттаивании бетоны и бетонные смеси реферат, добавки различного вида, обеспечивающие удобоук- ладываемость смеси или морозостойкость, и т. Бетон внутренней зоны, к которому постоянно находится под водой. Уменьшить начальные усадочные напряжения в размеров сооружений, расположения относительно уровней армированием элементов и устройством усадочных требования к гидротехническим бетонам по технологическими мерами - подбором состава, увлажнением среды при тепловой обработке. Щебень и гравий должны быть зоны имеют марку ниже чем бетон внешней зоны. При пролете более 15 м. При бетонировании больших массивов целесообразно и сцепление между ними, смесь бетона не менее чем в. В особенно массивных конструкциях бетон глубину до 10м применяют вертикальные звеньевые хоботы, свыше 10м. Капиллярные явления в цементном камне, процессами твердения и уменьшением объема на усадку бетона - поверхностные площадки применяют мототележки с опрокидными среду и гидратации с еще непрореагированными частицами цемента. Из теории упругости известно, что вокруг отверстий в материале, подвергнутом определяют объемы работ и выбирают стремится занять наименьший объем.

Виды бетонных смесей реферат по строительству, Сочинения из Промышленная инженерия. Промышленная инженерия. price-. Основные требования к качеству составных бетонов. Технология приготовления и транспортировки бетонной смеси, последовательность загрузки. Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и.